BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 25293320)

  • 1. Bioluminescence resonance energy transfer (BRET) to detect the interactions between kappa opioid receptor and non visual arrestins.
    Bedini A
    Methods Mol Biol; 2015; 1230():115-28. PubMed ID: 25293320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioluminescence Resonance Energy Transfer (BRET) to Detect the Interactions Between Kappa Opioid Receptor and Nonvisual Arrestins.
    Bedini A
    Methods Mol Biol; 2021; 2201():45-58. PubMed ID: 32975788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Homo- and hetero-oligomeric interactions between G-protein-coupled receptors in living cells monitored by two variants of bioluminescence resonance energy transfer (BRET): hetero-oligomers between receptor subtypes form more efficiently than between less closely related sequences.
    Ramsay D; Kellett E; McVey M; Rees S; Milligan G
    Biochem J; 2002 Jul; 365(Pt 2):429-40. PubMed ID: 11971762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methods to Monitor the Trafficking of β-Arrestin/G Protein-Coupled Receptor Complexes Using Enhanced Bystander BRET.
    Cao Y; Namkung Y; Laporte SA
    Methods Mol Biol; 2019; 1957():59-68. PubMed ID: 30919346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of receptor-attached phosphates in binding of visual and non-visual arrestins to G protein-coupled receptors.
    Gimenez LE; Kook S; Vishnivetskiy SA; Ahmed MR; Gurevich EV; Gurevich VV
    J Biol Chem; 2012 Mar; 287(12):9028-40. PubMed ID: 22275358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of β-Arrestin-Mediated G Protein-Coupled Receptor Ubiquitination Using BRET.
    Nagi K; Shenoy SK
    Methods Mol Biol; 2019; 1957():93-104. PubMed ID: 30919349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring opioid receptor dimerization in living cells by bioluminescence resonance energy transfer (BRET).
    Baiula M
    Methods Mol Biol; 2015; 1230():105-13. PubMed ID: 25293319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BRET approaches to characterize dopamine and TAAR1 receptor pharmacology and signaling.
    Espinoza S; Masri B; Salahpour A; Gainetdinov RR
    Methods Mol Biol; 2013; 964():107-22. PubMed ID: 23296781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of GPCR/beta-arrestin interactions in live cells using bioluminescence resonance energy transfer technology.
    Kocan M; Pfleger KD
    Methods Mol Biol; 2009; 552():305-17. PubMed ID: 19513659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential manipulation of arrestin-3 binding to basal and agonist-activated G protein-coupled receptors.
    Prokop S; Perry NA; Vishnivetskiy SA; Toth AD; Inoue A; Milligan G; Iverson TM; Hunyady L; Gurevich VV
    Cell Signal; 2017 Aug; 36():98-107. PubMed ID: 28461104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time analysis of agonist-induced activation of protease-activated receptor 1/Galphai1 protein complex measured by bioluminescence resonance energy transfer in living cells.
    Ayoub MA; Maurel D; Binet V; Fink M; Prézeau L; Ansanay H; Pin JP
    Mol Pharmacol; 2007 May; 71(5):1329-40. PubMed ID: 17267663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of BRET for studying G protein-coupled receptors.
    Kaczor AA; Makarska-Bialokoz M; Selent J; de la Fuente RA; Martí-Solano M; Castro M
    Mini Rev Med Chem; 2014 May; 14(5):411-25. PubMed ID: 24766382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of GPCR-protein interactions by BRET.
    Kocan M; Pfleger KD
    Methods Mol Biol; 2011; 746():357-71. PubMed ID: 21607868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of the BRET 7TM receptor/beta-arrestin assay in drug discovery and screening.
    Heding A
    Expert Rev Mol Diagn; 2004 May; 4(3):403-11. PubMed ID: 15137906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved donor/acceptor BRET couples for monitoring beta-arrestin recruitment to G protein-coupled receptors.
    Kamal M; Marquez M; Vauthier V; Leloire A; Froguel P; Jockers R; Couturier C
    Biotechnol J; 2009 Sep; 4(9):1337-44. PubMed ID: 19557797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New technologies: bioluminescence resonance energy transfer (BRET) for the detection of real time interactions involving G-protein coupled receptors.
    Pfleger KD; Eidne KA
    Pituitary; 2003; 6(3):141-51. PubMed ID: 14974443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of Arrestin Recruitment to Chemokine Receptors by Bioluminescence Resonance Energy Transfer.
    Bonneterre J; Montpas N; Boularan C; Galés C; Heveker N
    Methods Enzymol; 2016; 570():131-53. PubMed ID: 26921945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using Bioluminescence Resonance Energy Transfer (BRET) to Characterize Agonist-Induced Arrestin Recruitment to Modified and Unmodified G Protein-Coupled Receptors.
    Donthamsetti P; Quejada JR; Javitch JA; Gurevich VV; Lambert NA
    Curr Protoc Pharmacol; 2015 Sep; 70():2.14.1-2.14.14. PubMed ID: 26331887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measuring Recruitment of β-Arrestin to G Protein-Coupled Heterodimers Using Bioluminescence Resonance Energy Transfer.
    Fillion D; Devost D; Hébert TE
    Methods Mol Biol; 2019; 1957():83-91. PubMed ID: 30919348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monitoring interactions between G-protein-coupled receptors and beta-arrestins.
    Pfleger KD; Dalrymple MB; Dromey JR; Eidne KA
    Biochem Soc Trans; 2007 Aug; 35(Pt 4):764-6. PubMed ID: 17635143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.