BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

457 related articles for article (PubMed ID: 25293493)

  • 1. Sex differences in mitochondrial (dys)function: Implications for neuroprotection.
    Demarest TG; McCarthy MM
    J Bioenerg Biomembr; 2015 Apr; 47(1-2):173-88. PubMed ID: 25293493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondria in the Central Nervous System in Health and Disease: The Puzzle of the Therapeutic Potential of Mitochondrial Transplantation.
    Tripathi K; Ben-Shachar D
    Cells; 2024 Feb; 13(5):. PubMed ID: 38474374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regional susceptibilities to mitochondrial dysfunctions in the CNS.
    Pinto M; Pickrell AM; Moraes CT
    Biol Chem; 2012 Apr; 393(4):275-81. PubMed ID: 23029655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondria and the central nervous system: searching for a pathophysiological basis of psychiatric disorders.
    Streck EL; Gonçalves CL; Furlanetto CB; Scaini G; Dal-Pizzol F; Quevedo J
    Braz J Psychiatry; 2014; 36(2):156-67. PubMed ID: 24845118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Age and sex differences in the pathophysiology of acute CNS injury.
    Kim T; Chelluboina B; Chokkalla AK; Vemuganti R
    Neurochem Int; 2019 Jul; 127():22-28. PubMed ID: 30654116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gender differences in acute CNS trauma and stroke: neuroprotective effects of estrogen and progesterone.
    Roof RL; Hall ED
    J Neurotrauma; 2000 May; 17(5):367-88. PubMed ID: 10833057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Downregulation of glutaredoxin but not glutathione loss leads to mitochondrial dysfunction in female mice CNS: implications in excitotoxicity.
    Diwakar L; Kenchappa RS; Annepu J; Ravindranath V
    Neurochem Int; 2007 Jul; 51(1):37-46. PubMed ID: 17512091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased mitochondrial oxidative damage in patients with sporadic amyotrophic lateral sclerosis.
    Murata T; Ohtsuka C; Terayama Y
    J Neurol Sci; 2008 Apr; 267(1-2):66-9. PubMed ID: 17961597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial pathology: stress signals from the energy factory.
    Raimundo N
    Trends Mol Med; 2014 May; 20(5):282-92. PubMed ID: 24508276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cardiolipin in Central Nervous System Physiology and Pathology.
    Pointer CB; Klegeris A
    Cell Mol Neurobiol; 2017 Oct; 37(7):1161-1172. PubMed ID: 28039536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders.
    Sas K; Robotka H; Toldi J; Vécsei L
    J Neurol Sci; 2007 Jun; 257(1-2):221-39. PubMed ID: 17462670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial biogenesis: pharmacological approaches.
    Valero T
    Curr Pharm Des; 2014; 20(35):5507-9. PubMed ID: 24606795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sex-dependent mitochondrial respiratory impairment and oxidative stress in a rat model of neonatal hypoxic-ischemic encephalopathy.
    Demarest TG; Schuh RA; Waddell J; McKenna MC; Fiskum G
    J Neurochem; 2016 Jun; 137(5):714-29. PubMed ID: 27197831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial Calcium Handling in Physiology and Disease.
    Granatiero V; De Stefani D; Rizzuto R
    Adv Exp Med Biol; 2017; 982():25-47. PubMed ID: 28551780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondriopathies as a Clue to Systemic Disorders-Analytical Tools and Mitigating Measures in Context of Predictive, Preventive, and Personalized (3P) Medicine.
    Liskova A; Samec M; Koklesova L; Kudela E; Kubatka P; Golubnitschaja O
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33670490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of impaired mitochondrial energy metabolism in acute and chronic neurodegenerative disorders.
    Soane L; Kahraman S; Kristian T; Fiskum G
    J Neurosci Res; 2007 Nov; 85(15):3407-15. PubMed ID: 17847081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic reprogramming of human cells in response to oxidative stress: implications in the pathophysiology and therapy of mitochondrial diseases.
    Wu YT; Wu SB; Wei YH
    Curr Pharm Des; 2014; 20(35):5510-26. PubMed ID: 24606797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial medicine for aging and neurodegenerative diseases.
    Reddy PH
    Neuromolecular Med; 2008; 10(4):291-315. PubMed ID: 18566920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondria: a central target for sex differences in pathologies.
    Ventura-Clapier R; Moulin M; Piquereau J; Lemaire C; Mericskay M; Veksler V; Garnier A
    Clin Sci (Lond); 2017 May; 131(9):803-822. PubMed ID: 28424375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sex differences in the central nervous system actions of ethanol.
    Devaud LL; Alele P; Ritu C
    Crit Rev Neurobiol; 2003; 15(1):41-59. PubMed ID: 14513862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.