These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 25293507)

  • 1. Electrical conduction of nanoparticle monolayer for accurate tracking of mechanical stimulus in finger touch sensing.
    Jiao W; Yi L; Zhang C; Wu K; Li J; Qian L; Wang S; Jiang Y; Das B; Yuan S
    Nanoscale; 2014 Nov; 6(22):13809-16. PubMed ID: 25293507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoparticle-Structured Highly Sensitive and Anisotropic Gauge Sensors.
    Zhao W; Luo J; Shan S; Lombardi JP; Xu Y; Cartwright K; Lu S; Poliks M; Zhong CJ
    Small; 2015 Sep; 11(35):4509-16. PubMed ID: 26037089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecularly mediated thin film assembly of nanoparticles on flexible devices: electrical conductivity versus device strains in different gas/vapor environment.
    Yin J; Hu P; Luo J; Wang L; Cohen MF; Zhong CJ
    ACS Nano; 2011 Aug; 5(8):6516-26. PubMed ID: 21809822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A 3D-Printed Soft Fingertip Sensor for Providing Information about Normal and Shear Components of Interaction Forces.
    Wolterink G; Sanders R; van Beijnum BJ; Veltink P; Krijnen G
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34206438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly sensitive electrochemical detection of immunospecies based on combination of Fc label and PPD film/gold nanoparticle amplification.
    Zhang S; Zheng F; Wu Z; Shen G; Yu R
    Biosens Bioelectron; 2008 Sep; 24(1):129-35. PubMed ID: 18455918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impedimetric immunosensor based on gold nanoparticles modified graphene paper for label-free detection of Escherichia coli O157:H7.
    Wang Y; Ping J; Ye Z; Wu J; Ying Y
    Biosens Bioelectron; 2013 Nov; 49():492-8. PubMed ID: 23811484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wearable tactile sensor based on flexible microfluidics.
    Yeo JC; Yu J; Koh ZM; Wang Z; Lim CT
    Lab Chip; 2016 Aug; 16(17):3244-50. PubMed ID: 27438370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using ac-field-induced electro-osmosis to accelerate biomolecular binding in fiber-optic sensing chips with microstructures.
    Chuang Y; Lee CY; Lu SH; Wang SC; Chau LK; Hsieh WH
    Anal Chem; 2010 Feb; 82(3):1123-7. PubMed ID: 20055421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enlargement of gold nanoparticles on the surface of a self-assembled monolayer modified electrode: a mode in biosensor design.
    Zhou N; Wang J; Chen T; Yu Z; Li G
    Anal Chem; 2006 Jul; 78(14):5227-30. PubMed ID: 16841954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoporous gold supported cobalt oxide microelectrodes as high-performance electrochemical biosensors.
    Lang XY; Fu HY; Hou C; Han GF; Yang P; Liu YB; Jiang Q
    Nat Commun; 2013; 4():2169. PubMed ID: 23851924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A tactile sensor translating texture and sliding motion information into electrical pulses.
    Liao Z; Liu W; Wu Y; Zhang C; Zhang Y; Wang X; Li X
    Nanoscale; 2015 Jun; 7(24):10801-6. PubMed ID: 26036597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electroacoustic polymer microchip as an alternative to quartz crystal microbalance for biosensor development.
    Gamby J; Lazerges M; Girault HH; Deslouis C; Gabrielli C; Perrot H; Tribollet B
    Anal Chem; 2008 Dec; 80(23):8900-7. PubMed ID: 19551970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Moderately reverberant learning ultrasonic pinch panel.
    Nikolovski JP
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Oct; 60(10):2105-20. PubMed ID: 24081259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CdS nanocrystal-based electrochemiluminescence biosensor for the detection of low-density lipoprotein by increasing sensitivity with gold nanoparticle amplification.
    Jie G; Liu B; Pan H; Zhu JJ; Chen HY
    Anal Chem; 2007 Aug; 79(15):5574-81. PubMed ID: 17614363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Touch Sensing Technique Using the Effects of Extremely Low Frequency Fields on the Human Body.
    Elfekey H; Bastawrous HA; Okamoto S
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27918416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fingertip Fiber Optical Tactile Array with Two-Level Spring Structure.
    Konstantinova J; Stilli A; Althoefer K
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29027920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of haptic interface for finger exercise.
    Mali U; Goljar N; Munih M
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):352-60. PubMed ID: 17009495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct electrochemistry of horseradish peroxidase based on biocompatible carboxymethyl chitosan-gold nanoparticle nanocomposite.
    Xu Q; Mao C; Liu NN; Zhu JJ; Sheng J
    Biosens Bioelectron; 2006 Dec; 22(5):768-73. PubMed ID: 16600589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanically mediated electron transfer in model metallo-enzyme interfaces.
    Gorelik LY; Voinova MV
    Biosens Bioelectron; 2006 Sep; 22(3):405-8. PubMed ID: 16899359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current rectification by nanoparticle blocking in single cylindrical nanopores.
    Ali M; Ramirez P; Nasir S; Nguyen QH; Ensinger W; Mafe S
    Nanoscale; 2014 Sep; 6(18):10740-5. PubMed ID: 25100503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.