These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 25293513)

  • 1. Getting rid of the unwanted: highlights of developments and challenges of biobeneficiation of iron ore minerals-a review.
    Adeleke RA
    J Ind Microbiol Biotechnol; 2014 Dec; 41(12):1731-41. PubMed ID: 25293513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Culturable microorganisms associated with Sishen iron ore and their potential roles in biobeneficiation.
    Adeleke R; Cloete TE; Khasa DP
    World J Microbiol Biotechnol; 2012 Mar; 28(3):1057-70. PubMed ID: 22805827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-step biohydrometallurgical technology of copper-zinc concentrate processing as an opportunity to reduce negative impacts on the environment.
    Fomchenko NV; Muravyov MI
    J Environ Manage; 2018 Nov; 226():270-277. PubMed ID: 30121463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioleaching of copper- and zinc-bearing ore using consortia of indigenous iron-oxidizing bacteria.
    Sajjad W; Zheng G; Zhang G; Ma X; Xu W; Khan S
    Extremophiles; 2018 Nov; 22(6):851-863. PubMed ID: 30027412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biohydrometallurgy for Rare Earth Elements Recovery from Industrial Wastes.
    Castro L; Blázquez ML; González F; Muñoz JÁ
    Molecules; 2021 Oct; 26(20):. PubMed ID: 34684778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Biomineralization at hot springs and mineral springs, and their significance in relation to the Earth's history].
    Akai J
    Biol Sci Space; 2000 Dec; 14(4):363-71. PubMed ID: 11589228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Progress in bioleaching: part B, applications of microbial processes by the minerals industries.
    Roberto FF; Schippers A
    Appl Microbiol Biotechnol; 2022 Sep; 106(18):5913-5928. PubMed ID: 36038754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Progress in bioleaching: part B: applications of microbial processes by the minerals industries.
    Brierley CL; Brierley JA
    Appl Microbiol Biotechnol; 2013 Sep; 97(17):7543-52. PubMed ID: 23877580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioleaching review part B: progress in bioleaching: applications of microbial processes by the minerals industries.
    Olson GJ; Brierley JA; Brierley CL
    Appl Microbiol Biotechnol; 2003 Dec; 63(3):249-57. PubMed ID: 14566430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of particle-particle shearing on the bioleaching of sulfide minerals.
    Chong N; Karamanev DG; Margaritis A
    Biotechnol Bioeng; 2002 Nov; 80(3):349-57. PubMed ID: 12226868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of indigenous sulfur-oxidizing bacteria from municipal wastewater to selectively bioleach phosphorus from high-phosphorus iron ore: effect of particle size.
    Shen S; Rao R; Wang J
    Environ Technol; 2013; 34(1-4):173-80. PubMed ID: 23530328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Attachment of Acidithiobacillus ferrooxidans and Leptospirillum ferriphilum cultured under varying conditions to pyrite, chalcopyrite, low-grade ore and quartz in a packed column reactor.
    Africa CJ; van Hille RP; Harrison ST
    Appl Microbiol Biotechnol; 2013 Feb; 97(3):1317-24. PubMed ID: 22410741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extraction of copper from an oxidized (lateritic) ore using bacterially catalysed reductive dissolution.
    Nancucheo I; Grail BM; Hilario F; du Plessis C; Johnson DB
    Appl Microbiol Biotechnol; 2014; 98(14):6297-305. PubMed ID: 24687752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization and identification of an iron-oxidizing, Leptospirillum-like bacterium, present in the high sulfate leaching solution of a commercial bioleaching plant.
    Romero J; Yañez C; Vásquez M; Moore ER; Espejo RT
    Res Microbiol; 2003 Jun; 154(5):353-9. PubMed ID: 12837511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ASTER, ALI and Hyperion sensors data for lithological mapping and ore minerals exploration.
    Beiranvand Pour A; Hashim M
    Springerplus; 2014; 3():130. PubMed ID: 25674434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rock-to-Metal Ratio: A Foundational Metric for Understanding Mine Wastes.
    Nassar NT; Lederer GW; Brainard JL; Padilla AJ; Lessard JD
    Environ Sci Technol; 2022 May; 56(10):6710-6721. PubMed ID: 35467345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron ore weathering potentials of ectomycorrhizal plants.
    Adeleke RA; Cloete TE; Bertrand A; Khasa DP
    Mycorrhiza; 2012 Oct; 22(7):535-44. PubMed ID: 22349958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acidophilic Iron- and Sulfur-Oxidizing Bacteria,
    Yi Q; Wu S; Southam G; Robertson L; You F; Liu Y; Wang S; Saha N; Webb R; Wykes J; Chan TS; Lu YR; Huang L
    Environ Sci Technol; 2021 Jun; 55(12):8020-8034. PubMed ID: 34043324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomineralization of metal-containing ores and concentrates.
    Rawlings DE; Dew D; du Plessis C
    Trends Biotechnol; 2003 Jan; 21(1):38-44. PubMed ID: 12480349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Culture-dependent hunt and characterization of iron-oxidizing bacteria in Baiyin Copper Mine, China, and their application in metals extraction.
    Sajjad W; Zheng G; Ma X; Rafiq M; Irfan M; Xu W; Ali B
    J Basic Microbiol; 2019 Mar; 59(3):323-336. PubMed ID: 30592309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.