BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 25293694)

  • 1. Distinct palisade tissue development processes promoted by leaf autonomous signalling and long-distance signalling in Arabidopsis thaliana.
    Munekage YN; Inoue S; Yoneda Y; Yokota A
    Plant Cell Environ; 2015 Jun; 38(6):1116-26. PubMed ID: 25293694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tissue-autonomous promotion of palisade cell development by phototropin 2 in Arabidopsis.
    Kozuka T; Kong SG; Doi M; Shimazaki K; Nagatani A
    Plant Cell; 2011 Oct; 23(10):3684-95. PubMed ID: 21972260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photomorphogenesis of leaves: shade-avoidance and differentiation of sun and shade leaves.
    Kim GT; Yano S; Kozuka T; Tsukaya H
    Photochem Photobiol Sci; 2005 Sep; 4(9):770-4. PubMed ID: 16121290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple steps of leaf thickening during sun-leaf formation in Arabidopsis.
    Hoshino R; Yoshida Y; Tsukaya H
    Plant J; 2019 Nov; 100(4):738-753. PubMed ID: 31350790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The expression of phototropins in Arabidopsis leaves: developmental and light regulation.
    Łabuz J; Sztatelman O; Banaś AK; Gabryś H
    J Exp Bot; 2012 Feb; 63(4):1763-71. PubMed ID: 22371325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct leaf developmental and gene expression responses to light quantity depend on blue-photoreceptor or plastid-derived signals, and can occur in the absence of phototropins.
    López-Juez E; Bowyer JR; Sakai T
    Planta; 2007 Dec; 227(1):113-23. PubMed ID: 17701203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leaf positioning of Arabidopsis in response to blue light.
    Inoue S; Kinoshita T; Takemiya A; Doi M; Shimazaki K
    Mol Plant; 2008 Jan; 1(1):15-26. PubMed ID: 20031912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light quantity controls leaf-cell and chloroplast development in Arabidopsis thaliana wild type and blue-light-perception mutants.
    Weston E; Thorogood K; Vinti G; López-Juez E
    Planta; 2000 Nov; 211(6):807-15. PubMed ID: 11144265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional patterns of cell division and expansion throughout the development of Arabidopsis thaliana leaves.
    Kalve S; Fotschki J; Beeckman T; Vissenberg K; Beemster GT
    J Exp Bot; 2014 Dec; 65(22):6385-97. PubMed ID: 25205574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antagonistic regulation of leaf flattening by phytochrome B and phototropin in Arabidopsis thaliana.
    Kozuka T; Suetsugu N; Wada M; Nagatani A
    Plant Cell Physiol; 2013 Jan; 54(1):69-79. PubMed ID: 23054390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A role for AUXIN RESISTANT3 in the coordination of leaf growth.
    Pérez-Pérez JM; Candela H; Robles P; López-Torrejón G; del Pozo JC; Micol JL
    Plant Cell Physiol; 2010 Oct; 51(10):1661-73. PubMed ID: 20739302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chloroplast Accumulation Response Enhances Leaf Photosynthesis and Plant Biomass Production.
    Gotoh E; Suetsugu N; Yamori W; Ishishita K; Kiyabu R; Fukuda M; Higa T; Shirouchi B; Wada M
    Plant Physiol; 2018 Nov; 178(3):1358-1369. PubMed ID: 30266749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vertical leaf mass per area gradient of mature sugar maple reflects both height-driven increases in vascular tissue and light-driven increases in palisade layer thickness.
    Coble AP; Cavaleri MA
    Tree Physiol; 2017 Oct; 37(10):1337-1351. PubMed ID: 28338906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phototropin-mediated perception of light direction in leaves regulates blade flattening.
    Legris M; Szarzynska-Erden BM; Trevisan M; Allenbach Petrolati L; Fankhauser C
    Plant Physiol; 2021 Nov; 187(3):1235-1249. PubMed ID: 34618121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phototropins promote plant growth in response to blue light in low light environments.
    Takemiya A; Inoue S; Doi M; Kinoshita T; Shimazaki K
    Plant Cell; 2005 Apr; 17(4):1120-7. PubMed ID: 15749755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutation of the Arabidopsis NAC016 transcription factor delays leaf senescence.
    Kim YS; Sakuraba Y; Han SH; Yoo SC; Paek NC
    Plant Cell Physiol; 2013 Oct; 54(10):1660-72. PubMed ID: 23926065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systemic signalling of environmental cues in Arabidopsis leaves.
    Coupe SA; Palmer BG; Lake JA; Overy SA; Oxborough K; Woodward FI; Gray JE; Quick WP
    J Exp Bot; 2006; 57(2):329-41. PubMed ID: 16330523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phototropin- and photosynthesis-dependent mitochondrial positioning in Arabidopsis thaliana mesophyll cells.
    Islam MS; Van Nguyen T; Sakamoto W; Takagi S
    J Integr Plant Biol; 2020 Sep; 62(9):1352-1371. PubMed ID: 31961050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Age-dependent action of an ABA-inducible receptor kinase, RPK1, as a positive regulator of senescence in Arabidopsis leaves.
    Lee IC; Hong SW; Whang SS; Lim PO; Nam HG; Koo JC
    Plant Cell Physiol; 2011 Apr; 52(4):651-62. PubMed ID: 21382977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural assessment of the impact of environmental constraints on Arabidopsis thaliana leaf growth: a 3D approach.
    Wuyts N; Massonnet C; Dauzat M; Granier C
    Plant Cell Environ; 2012 Sep; 35(9):1631-46. PubMed ID: 22471732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.