BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 25293813)

  • 1. Proteomic pattern changes associated with obesity-induced asthenozoospermia.
    Liu Y; Guo Y; Song N; Fan Y; Li K; Teng X; Guo Q; Ding Z
    Andrology; 2015 Mar; 3(2):247-59. PubMed ID: 25293813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic profile of human spermatozoa in healthy and asthenozoospermic individuals.
    Cao X; Cui Y; Zhang X; Lou J; Zhou J; Bei H; Wei R
    Reprod Biol Endocrinol; 2018 Feb; 16(1):16. PubMed ID: 29482568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNASET2 in human spermatozoa and seminal plasma: a novel relevant indicator for asthenozoospermia.
    Liu Y; Chen G; Lu L; Sun H; Guo Q; Xue K; Fan Y; Ding Z
    Andrology; 2013 Jan; 1(1):75-84. PubMed ID: 23258633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of proteins involved in human sperm motility using high-throughput differential proteomics.
    Amaral A; Paiva C; Attardo Parrinello C; Estanyol JM; Ballescà JL; Ramalho-Santos J; Oliva R
    J Proteome Res; 2014 Dec; 13(12):5670-84. PubMed ID: 25250979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sperm phosphoproteome profiling by ultra performance liquid chromatography followed by data independent analysis (LC-MS(E)) reveals altered proteomic signatures in asthenozoospermia.
    Parte PP; Rao P; Redij S; Lobo V; D'Souza SJ; Gajbhiye R; Kulkarni V
    J Proteomics; 2012 Oct; 75(18):5861-71. PubMed ID: 22796355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aged men share the sperm protein PATE1 defect with young asthenozoospermia patients.
    Liu FJ; Liu X; Han JL; Wang YW; Jin SH; Liu XX; Liu J; Wang WT; Wang WJ
    Hum Reprod; 2015 Apr; 30(4):861-9. PubMed ID: 25637620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomic alterations underlie an association with teratozoospermia in obese mice sperm.
    Peng Y; Zhao W; Qu F; Jing J; Hu Y; Liu Y; Ding Z
    Reprod Biol Endocrinol; 2019 Oct; 17(1):82. PubMed ID: 31651332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A quantitative global proteomics approach to understanding the functional pathways dysregulated in the spermatozoa of asthenozoospermic testicular cancer patients.
    Panner Selvam MK; Agarwal A; Pushparaj PN
    Andrology; 2019 Jul; 7(4):454-462. PubMed ID: 30924599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of several proteins involved in regulation of sperm motility by proteomic analysis.
    Zhao C; Huo R; Wang FQ; Lin M; Zhou ZM; Sha JH
    Fertil Steril; 2007 Feb; 87(2):436-8. PubMed ID: 17074334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative proteomics of sperm tail in asthenozoospermic patients: exploring the molecular pathways affecting sperm motility.
    Mirshahvaladi S; Topraggaleh TR; Bucak MN; Rahimizadeh P; Shahverdi A
    Cell Tissue Res; 2023 Jun; 392(3):793-810. PubMed ID: 36847810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sperm mitochondrial dysfunction and oxidative stress as possible reasons for isolated asthenozoospermia.
    Nowicka-Bauer K; Lepczynski A; Ozgo M; Kamieniczna M; Fraczek M; Stanski L; Olszewska M; Malcher A; Skrzypczak W; Kurpisz MK
    J Physiol Pharmacol; 2018 Jun; 69(3):. PubMed ID: 30149371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Down-regulation of CatSper1 channel in epididymal spermatozoa contributes to the pathogenesis of asthenozoospermia, whereas up-regulation of the channel by Sheng-Jing-San treatment improves the sperm motility of asthenozoospermia in rats.
    Wang YN; Wang B; Liang M; Han CY; Zhang B; Cai J; Sun W; Xing GG
    Fertil Steril; 2013 Feb; 99(2):579-87. PubMed ID: 23148924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of proteomic differences in asthenozoospermic sperm samples.
    Martínez-Heredia J; de Mateo S; Vidal-Taboada JM; Ballescà JL; Oliva R
    Hum Reprod; 2008 Apr; 23(4):783-91. PubMed ID: 18281682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomic analysis of seminal extracellular vesicle proteins involved in asthenozoospermia by iTRAQ.
    Lin Y; Liang A; He Y; Li Z; Li Z; Wang G; Sun F
    Mol Reprod Dev; 2019 Sep; 86(9):1094-1105. PubMed ID: 31215738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A sperm-specific proteome-scale metabolic network model identifies non-glycolytic genes for energy deficiency in asthenozoospermia.
    Asghari A; Marashi SA; Ansari-Pour N
    Syst Biol Reprod Med; 2017 Apr; 63(2):100-112. PubMed ID: 28085499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomics-based study on asthenozoospermia: differential expression of proteasome alpha complex.
    Siva AB; Kameshwari DB; Singh V; Pavani K; Sundaram CS; Rangaraj N; Deenadayal M; Shivaji S
    Mol Hum Reprod; 2010 Jul; 16(7):452-62. PubMed ID: 20304782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Association of seminal plasma motility inhibitors/semenogelins with sperm in asthenozoospermia-infertile men.
    Terai K; Yoshida K; Yoshiike M; Fujime M; Iwamoto T
    Urol Int; 2010; 85(2):209-15. PubMed ID: 20720384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Motility and protein phosphorylation in healthy and asthenozoospermic sperm.
    Chan CC; Shui HA; Wu CH; Wang CY; Sun GH; Chen HM; Wu GJ
    J Proteome Res; 2009 Nov; 8(11):5382-6. PubMed ID: 19678645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human Spermatozoa Quantitative Proteomic Signature Classifies Normo- and Asthenozoospermia.
    Saraswat M; Joenväärä S; Jain T; Tomar AK; Sinha A; Singh S; Yadav S; Renkonen R
    Mol Cell Proteomics; 2017 Jan; 16(1):57-72. PubMed ID: 27895139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomic analyses reveal lower expression of TEX40 and ATP6V0A2 proteins related to calcium ion entry and acrosomal acidification in asthenozoospermic males.
    Sinha A; Singh V; Singh S; Yadav S
    Life Sci; 2019 Feb; 218():81-88. PubMed ID: 30550884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.