These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 25294087)

  • 1. Uncertainties in predicting rice yield by current crop models under a wide range of climatic conditions.
    Li T; Hasegawa T; Yin X; Zhu Y; Boote K; Adam M; Bregaglio S; Buis S; Confalonieri R; Fumoto T; Gaydon D; Marcaida M; Nakagawa H; Oriol P; Ruane AC; Ruget F; Singh B; Singh U; Tang L; Tao F; Wilkens P; Yoshida H; Zhang Z; Bouman B
    Glob Chang Biol; 2015 Mar; 21(3):1328-41. PubMed ID: 25294087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial variability of climate change impacts on yield of rice and wheat in the Indian Ganga Basin.
    Mishra A; Singh R; Raghuwanshi NS; Chatterjee C; Froebrich J
    Sci Total Environ; 2013 Dec; 468-469 Suppl():S132-8. PubMed ID: 23800620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon-temperature-water change analysis for peanut production under climate change: a prototype for the AgMIP coordinated climate-crop modeling project (C3MP).
    Ruane AC; McDermid S; Rosenzweig C; Baigorria GA; Jones JW; Romero CC; Dewayne Cecil L
    Glob Chang Biol; 2014 Feb; 20(2):394-407. PubMed ID: 24115520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of climate change on crop yield and role of model for achieving food security.
    Kumar M
    Environ Monit Assess; 2016 Aug; 188(8):465. PubMed ID: 27418072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impacts of climate change on paddy rice yield in a temperate climate.
    Kim HY; Ko J; Kang S; Tenhunen J
    Glob Chang Biol; 2013 Feb; 19(2):548-62. PubMed ID: 23504792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing uncertainties in crop and pasture ensemble model simulations of productivity and N
    Ehrhardt F; Soussana JF; Bellocchi G; Grace P; McAuliffe R; Recous S; Sándor R; Smith P; Snow V; de Antoni Migliorati M; Basso B; Bhatia A; Brilli L; Doltra J; Dorich CD; Doro L; Fitton N; Giacomini SJ; Grant B; Harrison MT; Jones SK; Kirschbaum MUF; Klumpp K; Laville P; Léonard J; Liebig M; Lieffering M; Martin R; Massad RS; Meier E; Merbold L; Moore AD; Myrgiotis V; Newton P; Pattey E; Rolinski S; Sharp J; Smith WN; Wu L; Zhang Q
    Glob Chang Biol; 2018 Feb; 24(2):e603-e616. PubMed ID: 29080301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Climate-associated rice yield change in the Northeast China Plain: A simulation analysis based on CMIP5 multi-model ensemble projection.
    Zhang H; Zhou G; Liu L; Wang B; Xiao D; He L
    Sci Total Environ; 2019 May; 666():126-138. PubMed ID: 30798223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From GCM grid cell to agricultural plot: scale issues affecting modelling of climate impact.
    Baron C; Sultan B; Balme M; Sarr B; Traore S; Lebel T; Janicot S; Dingkuhn M
    Philos Trans R Soc Lond B Biol Sci; 2005 Nov; 360(1463):2095-108. PubMed ID: 16433096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How do various maize crop models vary in their responses to climate change factors?
    Bassu S; Brisson N; Durand JL; Boote K; Lizaso J; Jones JW; Rosenzweig C; Ruane AC; Adam M; Baron C; Basso B; Biernath C; Boogaard H; Conijn S; Corbeels M; Deryng D; De Sanctis G; Gayler S; Grassini P; Hatfield J; Hoek S; Izaurralde C; Jongschaap R; Kemanian AR; Kersebaum KC; Kim SH; Kumar NS; Makowski D; Müller C; Nendel C; Priesack E; Pravia MV; Sau F; Shcherbak I; Tao F; Teixeira E; Timlin D; Waha K
    Glob Chang Biol; 2014 Jul; 20(7):2301-20. PubMed ID: 24395589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of crop model structure, parameters and climate projections to uncertainty in climate change impact assessments.
    Tao F; Rötter RP; Palosuo T; Gregorio Hernández Díaz-Ambrona C; Mínguez MI; Semenov MA; Kersebaum KC; Nendel C; Specka X; Hoffmann H; Ewert F; Dambreville A; Martre P; Rodríguez L; Ruiz-Ramos M; Gaiser T; Höhn JG; Salo T; Ferrise R; Bindi M; Cammarano D; Schulman AH
    Glob Chang Biol; 2018 Mar; 24(3):1291-1307. PubMed ID: 29245185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single rice growth period was prolonged by cultivars shifts, but yield was damaged by climate change during 1981-2009 in China, and late rice was just opposite.
    Tao F; Zhang Z; Shi W; Liu Y; Xiao D; Zhang S; Zhu Z; Wang M; Liu F
    Glob Chang Biol; 2013 Oct; 19(10):3200-9. PubMed ID: 23661287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parameterization-induced uncertainties and impacts of crop management harmonization in a global gridded crop model ensemble.
    Folberth C; Elliott J; Müller C; Balkovič J; Chryssanthacopoulos J; Izaurralde RC; Jones CD; Khabarov N; Liu W; Reddy A; Schmid E; Skalský R; Yang H; Arneth A; Ciais P; Deryng D; Lawrence PJ; Olin S; Pugh TAM; Ruane AC; Wang X
    PLoS One; 2019; 14(9):e0221862. PubMed ID: 31525247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impacts of future climate change on rice yield based on crop model simulation-A meta-analysis.
    Li N; Zhao Y; Han J; Yang Q; Liang J; Liu X; Wang Y; Huang Z
    Sci Total Environ; 2024 Nov; 949():175038. PubMed ID: 39059663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current rice models underestimate yield losses from short-term heat stresses.
    Sun T; Hasegawa T; Liu B; Tang L; Liu L; Cao W; Zhu Y
    Glob Chang Biol; 2021 Jan; 27(2):402-416. PubMed ID: 33063940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Risk factors for crop health under global change and agricultural shifts: a framework of analyses using rice in tropical and subtropical Asia as a model.
    Savary S; Mila A; Willocquet L; Esker PD; Carisse O; McRoberts N
    Phytopathology; 2011 Jun; 101(6):696-709. PubMed ID: 21261467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High vapor pressure deficit drives salt-stress-induced rice yield losses in India.
    Tack J; Singh RK; Nalley LL; Viraktamath BC; Krishnamurthy SL; Lyman N; Jagadish KS
    Glob Chang Biol; 2015 Apr; 21(4):1668-78. PubMed ID: 25379616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Climate change impact on wheat and maize growth in Ethiopia: A multi-model uncertainty analysis.
    Rettie FM; Gayler S; K D Weber T; Tesfaye K; Streck T
    PLoS One; 2022; 17(1):e0262951. PubMed ID: 35061854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plausible rice yield losses under future climate warming.
    Zhao C; Piao S; Wang X; Huang Y; Ciais P; Elliott J; Huang M; Janssens IA; Li T; Lian X; Liu Y; Müller C; Peng S; Wang T; Zeng Z; Peñuelas J
    Nat Plants; 2016 Dec; 3():16202. PubMed ID: 27991912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A trait-based model ensemble approach to design rice plant types for future climate.
    Paleari L; Li T; Yang Y; Wilson LT; Hasegawa T; Boote KJ; Buis S; Hoogenboom G; Gao Y; Movedi E; Ruget F; Singh U; Stöckle CO; Tang L; Wallach D; Zhu Y; Confalonieri R
    Glob Chang Biol; 2022 Apr; 28(8):2689-2710. PubMed ID: 35043531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Projected climate impacts to South African maize and wheat production in 2055: a comparison of empirical and mechanistic modeling approaches.
    Estes LD; Beukes H; Bradley BA; Debats SR; Oppenheimer M; Ruane AC; Schulze R; Tadross M
    Glob Chang Biol; 2013 Dec; 19(12):3762-74. PubMed ID: 23864352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.