These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 25294121)

  • 1. The structures and thermodynamic stability of copper(II) chloride surfaces.
    Altarawneh M; Jiang ZT; Dlugogorski BZ
    Phys Chem Chem Phys; 2014 Nov; 16(44):24209-15. PubMed ID: 25294121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamic stability and structure of cuprous chloride surfaces: a DFT investigation.
    Suleiman IA; Radny MW; Gladys MJ; Smith PV; Mackie JC; Kennedy EM; Dlugogorski BZ
    Phys Chem Chem Phys; 2015 Mar; 17(10):7038-45. PubMed ID: 25687716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamic stability and structures of iron chloride surfaces: a first-principles investigation.
    Saraireh SA; Altarawneh M
    J Chem Phys; 2014 Aug; 141(5):054709. PubMed ID: 25106602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structures, electronic properties and stability phase diagrams for copper(I/II) bromide surfaces.
    Altarawneh M; Marashdeh A; Dlugogorski BZ
    Phys Chem Chem Phys; 2015 Apr; 17(14):9341-51. PubMed ID: 25760395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An equilibrium ab initio atomistic thermodynamics study of chlorine adsorption on the Cu(001) surface.
    Suleiman IA; Radny MW; Gladys MJ; Smith PV; Mackie JC; Kennedy EM; Dlugogorski BZ
    Phys Chem Chem Phys; 2011 Jun; 13(21):10306-11. PubMed ID: 21509396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [CuCl3]- and [CuCl4]2- hydrates in concentrated aqueous solution: a density functional theory and ab initio study.
    Yi HB; Xia FF; Zhou Q; Zeng D
    J Phys Chem A; 2011 May; 115(17):4416-26. PubMed ID: 21462945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A low energy pathway to CuCl2 at Cu(110) surfaces.
    Carley AF; Davies PR; Harikumar KR; Jones RV
    Phys Chem Chem Phys; 2009 Dec; 11(46):10899-907. PubMed ID: 19924324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Density-functional calculation of CeO2 surfaces and prediction of effects of oxygen partial pressure and temperature on stabilities.
    Jiang Y; Adams JB; van Schilfgaarde M
    J Chem Phys; 2005 Aug; 123(6):64701. PubMed ID: 16122329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct chlorination of carbon by copper chloride in a thermal process.
    Fujimori T; Takaoka M
    Environ Sci Technol; 2009 Apr; 43(7):2241-6. PubMed ID: 19452869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal-metal communication in copper(II) complexes of cyclotetraphosphazene ligands.
    Ainscough EW; Brodie AM; Davidson RJ; Moubaraki B; Murray KS; Otter CA; Waterland MR
    Inorg Chem; 2008 Oct; 47(20):9182-92. PubMed ID: 18817378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamic Stability of Low- and High-Index Spinel LiMn2O4 Surface Terminations.
    Warburton RE; Iddir H; Curtiss LA; Greeley J
    ACS Appl Mater Interfaces; 2016 May; 8(17):11108-21. PubMed ID: 27031889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduction of hazards from copper(I) chloride in a Cu-Cl thermochemical hydrogen production plant.
    Ghandehariun S; Wang Z; Rosen MA; Naterer GF
    J Hazard Mater; 2012 Aug; 229-230():48-56. PubMed ID: 22749124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduction from copper(II) to copper(I) upon collisional activation of (pyridine)(2) CuCl(+).
    Révész A; Milko P; Zabka J; Schröder D; Roithová J
    J Mass Spectrom; 2010 Nov; 45(11):1246-52. PubMed ID: 20963734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Raman and ab initio investigation of aqueous Cu(I) chloride complexes from 25 to 80 °C.
    Applegarth LM; Corbeil CR; Mercer DJ; Pye CC; Tremaine PR
    J Phys Chem B; 2014 Jan; 118(1):204-14. PubMed ID: 24256415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First-principles calculations of the stability and electronic properties of the PbTiO3 (110) polar surface.
    Zhang GX; Xie Y; Yu HT; Fu HG
    J Comput Chem; 2009 Sep; 30(12):1785-98. PubMed ID: 19090567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First-principles predictions of the structure, stability, and photocatalytic potential of Cu2O surfaces.
    Bendavid LI; Carter EA
    J Phys Chem B; 2013 Dec; 117(49):15750-60. PubMed ID: 24138294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamic Stability of BiFeO
    Dai JQ; Xu JW; Zhu JH
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):3168-3177. PubMed ID: 28032753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic scale insights on chlorinated gamma-alumina surfaces.
    Digne M; Raybaud P; Sautet P; Guillaume D; Toulhoat H
    J Am Chem Soc; 2008 Aug; 130(33):11030-9. PubMed ID: 18646849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The interaction of CO with a copper(ii) chloride oxy-chlorination catalyst.
    Guan S; Rossi GE; Winfield JM; Wilson C; MacLaren D; Morgan DJ; Davies PR; Willock DJ; Lennon D
    Faraday Discuss; 2021 May; 229():318-340. PubMed ID: 33644789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and chemical reactivity of the polar three-fold surfaces of GaPd: a density-functional study.
    Krajčí M; Hafner J
    J Chem Phys; 2013 Mar; 138(12):124703. PubMed ID: 23556738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.