BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 2529415)

  • 1. Independent and coupled translational initiation of atp genes in Escherichia coli: experiments using chromosomal and plasmid-borne lacZ fusions.
    Gerstel B; McCarthy JE
    Mol Microbiol; 1989 Jul; 3(7):851-9. PubMed ID: 2529415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Translational coupling varying in efficiency between different pairs of genes in the central region of the atp operon of Escherichia coli.
    Hellmuth K; Rex G; Surin B; Zinck R; McCarthy JE
    Mol Microbiol; 1991 Apr; 5(4):813-24. PubMed ID: 1830358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mechanism of translational coupling in Escherichia coli. Higher order structure in the atpHA mRNA acts as a conformational switch regulating the access of de novo initiating ribosomes.
    Rex G; Surin B; Besse G; Schneppe B; McCarthy JE
    J Biol Chem; 1994 Jul; 269(27):18118-27. PubMed ID: 7517937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determinants of translational initiation efficiency in the atp operon of Escherichia coli.
    McCarthy JE; Bokelmann C
    Mol Microbiol; 1988 Jul; 2(4):455-65. PubMed ID: 2902504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ribosomal affinity and translational initiation in Escherichia coli. In vitro investigations using translational initiation regions of differing efficiencies from the atp operon.
    Lang V; Gualerzi C; McCarthy JE
    J Mol Biol; 1989 Dec; 210(3):659-63. PubMed ID: 2693739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Post-transcriptional control in Escherichia coli: translation and degradation of the atp operon mRNA.
    McCarthy JE; Schauder B; Ziemke P
    Gene; 1988 Dec; 72(1-2):131-9. PubMed ID: 2907496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Translation of the first gene of the Escherichia coli unc operon. Selection of the start codon and control of initiation efficiency.
    Schneppe B; Deckers-Hebestreit G; McCarthy JE; Altendorf K
    J Biol Chem; 1991 Nov; 266(31):21090-8. PubMed ID: 1834655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of lac fusions to measure in vivo regulation of expression of Escherichia coli proton-translocating ATPase (unc) genes.
    Angov E; Brusilow WS
    J Bacteriol; 1988 Jan; 170(1):459-62. PubMed ID: 2891682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Translational initiation frequency of atp genes from Escherichia coli: identification of an intercistronic sequence that enhances translation.
    McCarthy JE; Schairer HU; Sebald W
    EMBO J; 1985 Feb; 4(2):519-26. PubMed ID: 2862030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An improved vector system for constructing transcriptional lacZ fusions: analysis of regulation of the dnaA, dnaN, recF and gyrB genes of Escherichia coli.
    Macián F; Pérez-Roger I; Armengod ME
    Gene; 1994 Jul; 145(1):17-24. PubMed ID: 8045420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Promoter region of the nar operon of Escherichia coli: nucleotide sequence and transcription initiation signals.
    Li SF; DeMoss JA
    J Bacteriol; 1987 Oct; 169(10):4614-20. PubMed ID: 3308846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced expression of cro-beta-galactosidase fusion proteins under the control of the PR promoter of bacteriophage lambda.
    Zabeau M; Stanley KK
    EMBO J; 1982; 1(10):1217-24. PubMed ID: 6327257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of lacZ from the promoter of the Escherichia coli spc operon cloned into vectors carrying the W205 trp-lac fusion.
    Liang ST; Dennis PP; Bremer H
    J Bacteriol; 1998 Dec; 180(23):6090-100. PubMed ID: 9829916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of lacZ fusions to measure in vivo expression of the first three genes of the Escherichia coli unc operon.
    Solomon KA; Hsu DK; Brusilow WS
    J Bacteriol; 1989 Jun; 171(6):3039-45. PubMed ID: 2524469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Escherichia coli protein synthesis initiation factor IF3 controls its own gene expression at the translational level in vivo.
    Butler JS; Springer M; Dondon J; Graffe M; Grunberg-Manago M
    J Mol Biol; 1986 Dec; 192(4):767-80. PubMed ID: 2438418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effect of the length of the loop segment of local mRNA secondary structure in the region of lacZ gene translation initiation on its expression].
    Nikolenko GN; Kravchenko VV
    Mol Gen Mikrobiol Virusol; 1996; (1):28-32. PubMed ID: 8786747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple mechanisms contribute to osmotic inducibility of proU operon expression in Escherichia coli: demonstration of two osmoresponsive promoters and of a negative regulatory element within the first structural gene.
    Dattananda CS; Rajkumari K; Gowrishankar J
    J Bacteriol; 1991 Dec; 173(23):7481-90. PubMed ID: 1938945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved vector system for constructing transcriptional fusions that ensures independent translation of lacZ.
    Linn T; St Pierre R
    J Bacteriol; 1990 Feb; 172(2):1077-84. PubMed ID: 2137119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of structure of the initiator codon on translation in E. coli.
    Khudyakov YuE ; Neplyueva VS; Kalinina TI; Smirnov VD
    FEBS Lett; 1988 May; 232(2):369-71. PubMed ID: 2967775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Limited differential mRNA inactivation in the atp (unc) operon of Escherichia coli.
    Lagoni OR; von Meyenburg K; Michelsen O
    J Bacteriol; 1993 Sep; 175(18):5791-7. PubMed ID: 7690747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.