BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 25294873)

  • 21. Human protein arginine methyltransferases (PRMTs) can be optimally active under nonphysiological conditions.
    Lowe TL; Clarke SG
    J Biol Chem; 2022 Sep; 298(9):102290. PubMed ID: 35868559
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transient Kinetics Define a Complete Kinetic Model for Protein Arginine Methyltransferase 1.
    Hu H; Luo C; Zheng YG
    J Biol Chem; 2016 Dec; 291(52):26722-26738. PubMed ID: 27834681
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Computational Study of Symmetric Methylation on Histone Arginine Catalyzed by Protein Arginine Methyltransferase PRMT5 through QM/MM MD and Free Energy Simulations.
    Yue Y; Chu Y; Guo H
    Molecules; 2015 May; 20(6):10032-46. PubMed ID: 26035101
    [TBL] [Abstract][Full Text] [Related]  

  • 24. PRMT5 (Janus kinase-binding protein 1) catalyzes the formation of symmetric dimethylarginine residues in proteins.
    Branscombe TL; Frankel A; Lee JH; Cook JR; Yang Z; Pestka S; Clarke S
    J Biol Chem; 2001 Aug; 276(35):32971-6. PubMed ID: 11413150
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Examining Product Specificity in Protein Arginine Methyltransferase 7 (PRMT7) Using Quantum and Molecular Mechanical Simulations.
    Thakur A; Hevel JM; Acevedo O
    J Chem Inf Model; 2019 Jun; 59(6):2913-2923. PubMed ID: 31033288
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural specificity of substrate for S-adenosylmethionine:protein arginine N-methyltransferases.
    Rawal N; Rajpurohit R; Lischwe MA; Williams KR; Paik WK; Kim S
    Biochim Biophys Acta; 1995 Apr; 1248(1):11-8. PubMed ID: 7536038
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A kinetic study of human protein arginine N-methyltransferase 6 reveals a distributive mechanism.
    Lakowski TM; Frankel A
    J Biol Chem; 2008 Apr; 283(15):10015-25. PubMed ID: 18263580
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The predominant protein-arginine methyltransferase from Saccharomyces cerevisiae.
    Gary JD; Lin WJ; Yang MC; Herschman HR; Clarke S
    J Biol Chem; 1996 May; 271(21):12585-94. PubMed ID: 8647869
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Caenorhabditis elegans PRMT-7 and PRMT-9 Are Evolutionarily Conserved Protein Arginine Methyltransferases with Distinct Substrate Specificities.
    Hadjikyriacou A; Clarke SG
    Biochemistry; 2017 May; 56(20):2612-2626. PubMed ID: 28441492
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Histone methyltransferases in Aspergillus nidulans: evidence for a novel enzyme with a unique substrate specificity.
    Trojer P; Dangl M; Bauer I; Graessle S; Loidl P; Brosch G
    Biochemistry; 2004 Aug; 43(33):10834-43. PubMed ID: 15311944
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phe71 in Type III Trypanosomal Protein Arginine Methyltransferase 7 (TbPRMT7) Restricts the Enzyme to Monomethylation.
    Cáceres TB; Thakur A; Price OM; Ippolito N; Li J; Qu J; Acevedo O; Hevel JM
    Biochemistry; 2018 Feb; 57(8):1349-1359. PubMed ID: 29378138
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Protein-arginine methyltransferase I, the predominant protein-arginine methyltransferase in cells, interacts with and is regulated by interleukin enhancer-binding factor 3.
    Tang J; Kao PN; Herschman HR
    J Biol Chem; 2000 Jun; 275(26):19866-76. PubMed ID: 10749851
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A remodeled protein arginine methyltransferase 1 (PRMT1) generates symmetric dimethylarginine.
    Gui S; Gathiaka S; Li J; Qu J; Acevedo O; Hevel JM
    J Biol Chem; 2014 Mar; 289(13):9320-7. PubMed ID: 24478314
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Substrate profiling of PRMT1 reveals amino acid sequences that extend beyond the "RGG" paradigm.
    Wooderchak WL; Zang T; Zhou ZS; Acuña M; Tahara SM; Hevel JM
    Biochemistry; 2008 Sep; 47(36):9456-66. PubMed ID: 18700728
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PRMT7, a new protein arginine methyltransferase that synthesizes symmetric dimethylarginine.
    Lee JH; Cook JR; Yang ZH; Mirochnitchenko O; Gunderson SI; Felix AM; Herth N; Hoffmann R; Pestka S
    J Biol Chem; 2005 Feb; 280(5):3656-64. PubMed ID: 15494416
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Protein arginine methyltransferase 1: positively charged residues in substrate peptides distal to the site of methylation are important for substrate binding and catalysis.
    Osborne TC; Obianyo O; Zhang X; Cheng X; Thompson PR
    Biochemistry; 2007 Nov; 46(46):13370-81. PubMed ID: 17960915
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Yeast Hmt1 catalyses asymmetric dimethylation of histone H3 arginine 2 in vitro.
    Li HT; Gong T; Zhou Z; Liu YT; Cao X; He Y; Chen CD; Zhou JQ
    Biochem J; 2015 May; 467(3):507-15. PubMed ID: 25715670
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Systematic investigation of PRMT6 substrate recognition reveals broad specificity with a preference for an RG motif or basic and bulky residues.
    Hamey JJ; Rakow S; Bouchard C; Senst JM; Kolb P; Bauer UM; Wilkins MR; Hart-Smith G
    FEBS J; 2021 Oct; 288(19):5668-5691. PubMed ID: 33764612
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hsl7 is a substrate-specific type II protein arginine methyltransferase in yeast.
    Sayegh J; Clarke SG
    Biochem Biophys Res Commun; 2008 Aug; 372(4):811-5. PubMed ID: 18515076
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enzymatic methylation of recombinant heterogeneous nuclear RNP protein A1. Dual substrate specificity for S-adenosylmethionine:histone-arginine N-methyltransferase.
    Rajpurohit R; Lee SO; Park JO; Paik WK; Kim S
    J Biol Chem; 1994 Jan; 269(2):1075-82. PubMed ID: 8288564
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.