BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 25294875)

  • 1. Changes in transcription and metabolism during the early stage of replicative cellular senescence in budding yeast.
    Kamei Y; Tamada Y; Nakayama Y; Fukusaki E; Mukai Y
    J Biol Chem; 2014 Nov; 289(46):32081-32093. PubMed ID: 25294875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene regulatory changes in yeast during life extension by nutrient limitation.
    Wang J; Jiang JC; Jazwinski SM
    Exp Gerontol; 2010 Aug; 45(7-8):621-31. PubMed ID: 20178842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GABA metabolism pathway genes, UGA1 and GAD1, regulate replicative lifespan in Saccharomyces cerevisiae.
    Kamei Y; Tamura T; Yoshida R; Ohta S; Fukusaki E; Mukai Y
    Biochem Biophys Res Commun; 2011 Apr; 407(1):185-90. PubMed ID: 21371425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proline metabolism regulates replicative lifespan in the yeast
    Mukai Y; Kamei Y; Liu X; Jiang S; Sugimoto Y; Mat Nanyan NSB; Watanabe D; Takagi H
    Microb Cell; 2019 Sep; 6(10):482-490. PubMed ID: 31646149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Branched-Chain Aminotransferases Control TORC1 Signaling in Saccharomyces cerevisiae.
    Kingsbury JM; Sen ND; Cardenas ME
    PLoS Genet; 2015 Dec; 11(12):e1005714. PubMed ID: 26659116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid Nuclear Exclusion of Hcm1 in Aging
    Ghavidel A; Baxi K; Prusinkiewicz M; Swan C; Belak ZR; Eskiw CH; Carvalho CE; Harkness TA
    G3 (Bethesda); 2018 May; 8(5):1579-1592. PubMed ID: 29519938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide expression analyses of the stationary phase model of ageing in yeast.
    Wanichthanarak K; Wongtosrad N; Petranovic D
    Mech Ageing Dev; 2015 Jul; 149():65-74. PubMed ID: 26079307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time course gene expression profiling of yeast spore germination reveals a network of transcription factors orchestrating the global response.
    Geijer C; Pirkov I; Vongsangnak W; Ericsson A; Nielsen J; Krantz M; Hohmann S
    BMC Genomics; 2012 Oct; 13():554. PubMed ID: 23066959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptome analysis of a respiratory Saccharomyces cerevisiae strain suggests the expression of its phenotype is glucose insensitive and predominantly controlled by Hap4, Cat8 and Mig1.
    Bonander N; Ferndahl C; Mostad P; Wilks MD; Chang C; Showe L; Gustafsson L; Larsson C; Bill RM
    BMC Genomics; 2008 Jul; 9():365. PubMed ID: 18671860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global transcription analysis of Krebs tricarboxylic acid cycle mutants reveals an alternating pattern of gene expression and effects on hypoxic and oxidative genes.
    McCammon MT; Epstein CB; Przybyla-Zawislak B; McAlister-Henn L; Butow RA
    Mol Biol Cell; 2003 Mar; 14(3):958-72. PubMed ID: 12631716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TCA cycle activity in Saccharomyces cerevisiae is a function of the environmentally determined specific growth and glucose uptake rates.
    Blank LM; Sauer U
    Microbiology (Reading); 2004 Apr; 150(Pt 4):1085-1093. PubMed ID: 15073318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global expression profiling of yeast treated with an inhibitor of amino acid biosynthesis, sulfometuron methyl.
    Jia MH; Larossa RA; Lee JM; Rafalski A; Derose E; Gonye G; Xue Z
    Physiol Genomics; 2000 Aug; 3(2):83-92. PubMed ID: 11015603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolomics and transcriptomics profiles reveal the dysregulation of the tricarboxylic acid cycle and related mechanisms in prostate cancer.
    Shao Y; Ye G; Ren S; Piao HL; Zhao X; Lu X; Wang F; Ma W; Li J; Yin P; Xia T; Xu C; Yu JJ; Sun Y; Xu G
    Int J Cancer; 2018 Jul; 143(2):396-407. PubMed ID: 29441565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic response to iron deficiency in Saccharomyces cerevisiae.
    Shakoury-Elizeh M; Protchenko O; Berger A; Cox J; Gable K; Dunn TM; Prinz WA; Bard M; Philpott CC
    J Biol Chem; 2010 May; 285(19):14823-33. PubMed ID: 20231268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SIR2 and other genes are abundantly expressed in long-lived natural segregants for replicative aging of the budding yeast Saccharomyces cerevisiae.
    Guo Z; Adomas AB; Jackson ED; Qin H; Townsend JP
    FEMS Yeast Res; 2011 Jun; 11(4):345-55. PubMed ID: 21306556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic responses of Saccharomyces cerevisiae to ethanol stress using gas chromatography-mass spectrometry.
    Ming M; Wang X; Lian L; Zhang H; Gao W; Zhu B; Lou D
    Mol Omics; 2019 Jun; 15(3):216-221. PubMed ID: 31066408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spt4 promotes cellular senescence by activating non-coding RNA transcription in ribosomal RNA gene clusters.
    Yokoyama M; Sasaki M; Kobayashi T
    Cell Rep; 2023 Jan; 42(1):111944. PubMed ID: 36640349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of the yeast plasma membrane SPS nutrient sensor in the metabolic response to extracellular amino acids.
    Forsberg H; Gilstring CF; Zargari A; Martínez P; Ljungdahl PO
    Mol Microbiol; 2001 Oct; 42(1):215-28. PubMed ID: 11679080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased heme synthesis in yeast induces a metabolic switch from fermentation to respiration even under conditions of glucose repression.
    Zhang T; Bu P; Zeng J; Vancura A
    J Biol Chem; 2017 Oct; 292(41):16942-16954. PubMed ID: 28830930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Global expression profiling of Saccharomyces cerevisiae: metabolic remodeling in post-log phase].
    Ye Y; Tang Y; Chen H; Zheng S; Pan L; Lin Y
    Sheng Wu Gong Cheng Xue Bao; 2008 Jun; 24(6):962-7. PubMed ID: 18807977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.