BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 25294875)

  • 21. A comparison of the aging and apoptotic transcriptome of Saccharomyces cerevisiae.
    Laun P; Ramachandran L; Jarolim S; Herker E; Liang P; Wang J; Weinberger M; Burhans DT; Suter B; Madeo F; Burhans WC; Breitenbach M
    FEMS Yeast Res; 2005 Dec; 5(12):1261-72. PubMed ID: 16168721
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Estimating network changes from lifespan measurements using a parsimonious gene network model of cellular aging.
    Qin H
    BMC Bioinformatics; 2019 Nov; 20(1):599. PubMed ID: 31747877
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plasma membrane damage limits replicative lifespan in yeast and induces premature senescence in human fibroblasts.
    Suda K; Moriyama Y; Razali N; Chiu Y; Masukagami Y; Nishimura K; Barbee H; Takase H; Sugiyama S; Yamazaki Y; Sato Y; Higashiyama T; Johmura Y; Nakanishi M; Kono K
    Nat Aging; 2024 Mar; 4(3):319-335. PubMed ID: 38388781
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-throughput profiling of amino acids in strains of the Saccharomyces cerevisiae deletion collection.
    Cooper SJ; Finney GL; Brown SL; Nelson SK; Hesselberth J; MacCoss MJ; Fields S
    Genome Res; 2010 Sep; 20(9):1288-96. PubMed ID: 20610602
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Global mRNA expression analysis in myosin II deficient strains of Saccharomyces cerevisiae reveals an impairment of cell integrity functions.
    Rodríguez-Quiñones JF; Irizarry RA; Díaz-Blanco NL; Rivera-Molina FE; Gómez-Garzón D; Rodríguez-Medina JR
    BMC Genomics; 2008 Jan; 9():34. PubMed ID: 18215314
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two programmed replicative lifespans of Saccharomyces cerevisiae formed by the endogenous molecular-cellular network.
    Hu J; Zhu X; Wang X; Yuan R; Zheng W; Xu M; Ao P
    J Theor Biol; 2014 Dec; 362():69-74. PubMed ID: 24447585
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Toward a global analysis of metabolites in regulatory mutants of yeast.
    Humston EM; Dombek KM; Tu BP; Young ET; Synovec RE
    Anal Bioanal Chem; 2011 Nov; 401(8):2387-402. PubMed ID: 21416166
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microarray analyses of the metabolic responses of Saccharomyces cerevisiae to organic solvent dimethyl sulfoxide.
    Zhang W; Needham DL; Coffin M; Rooker A; Hurban P; Tanzer MM; Shuster JR
    J Ind Microbiol Biotechnol; 2003 Jan; 30(1):57-69. PubMed ID: 12545388
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An Impaired Respiratory Electron Chain Triggers Down-regulation of the Energy Metabolism and De-ubiquitination of Solute Carrier Amino Acid Transporters.
    Aretz I; Hardt C; Wittig I; Meierhofer D
    Mol Cell Proteomics; 2016 May; 15(5):1526-38. PubMed ID: 26852163
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional genomic analysis of commercial baker's yeast during initial stages of model dough-fermentation.
    Tanaka F; Ando A; Nakamura T; Takagi H; Shima J
    Food Microbiol; 2006 Dec; 23(8):717-28. PubMed ID: 16943074
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nutrient-regulated antisense and intragenic RNAs modulate a signal transduction pathway in yeast.
    Nishizawa M; Komai T; Katou Y; Shirahige K; Ito T; Toh-E A
    PLoS Biol; 2008 Dec; 6(12):2817-30. PubMed ID: 19108609
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stress-dependent coordination of transcriptome and translatome in yeast.
    Halbeisen RE; Gerber AP
    PLoS Biol; 2009 May; 7(5):e1000105. PubMed ID: 19419242
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of low glycolytic activities in gcr1 and gcr2 mutants on the expression of other metabolic pathway genes in Saccharomyces cerevisiae.
    Sasaki H; Uemura H
    Yeast; 2005 Jan; 22(2):111-27. PubMed ID: 15645478
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional Metabolomics Describes the Yeast Biosynthetic Regulome.
    Mülleder M; Calvani E; Alam MT; Wang RK; Eckerstorfer F; Zelezniak A; Ralser M
    Cell; 2016 Oct; 167(2):553-565.e12. PubMed ID: 27693354
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Protein biogenesis machinery is a driver of replicative aging in yeast.
    Janssens GE; Meinema AC; González J; Wolters JC; Schmidt A; Guryev V; Bischoff R; Wit EC; Veenhoff LM; Heinemann M
    Elife; 2015 Dec; 4():e08527. PubMed ID: 26422514
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Selective inhibition of yeast regulons by daunorubicin: a transcriptome-wide analysis.
    Rojas M; Casado M; Portugal J; Piña B
    BMC Genomics; 2008 Jul; 9():358. PubMed ID: 18667070
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Links between nucleolar activity, rDNA stability, aneuploidy and chronological aging in the yeast Saccharomyces cerevisiae.
    Lewinska A; Miedziak B; Kulak K; Molon M; Wnuk M
    Biogerontology; 2014 Jun; 15(3):289-316. PubMed ID: 24711086
    [TBL] [Abstract][Full Text] [Related]  

  • 38. When transcriptome meets metabolome: fast cellular responses of yeast to sudden relief of glucose limitation.
    Kresnowati MT; van Winden WA; Almering MJ; ten Pierick A; Ras C; Knijnenburg TA; Daran-Lapujade P; Pronk JT; Heijnen JJ; Daran JM
    Mol Syst Biol; 2006; 2():49. PubMed ID: 16969341
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Response of genes associated with mitochondrial function to mild heat stress in yeast Saccharomyces cerevisiae.
    Sakaki K; Tashiro K; Kuhara S; Mihara K
    J Biochem; 2003 Sep; 134(3):373-84. PubMed ID: 14561723
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Is Gcn4-induced autophagy the ultimate downstream mechanism by which hormesis extends yeast replicative lifespan?
    Shen ZJ; Postnikoff S; Tyler JK
    Curr Genet; 2019 Jun; 65(3):717-720. PubMed ID: 30673825
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.