BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 25294882)

  • 1. Therapeutic potential of induced neural stem cells for spinal cord injury.
    Hong JY; Lee SH; Lee SC; Kim JW; Kim KP; Kim SM; Tapia N; Lim KT; Kim J; Ahn HS; Ko K; Shin CY; Lee HT; Schöler HR; Hyun JK; Han DW
    J Biol Chem; 2014 Nov; 289(47):32512-25. PubMed ID: 25294882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of the Post-Spinal Cord Injury Microenvironment on the Differentiation Capacity of Human Neural Stem Cells Derived from Induced Pluripotent Stem Cells.
    López-Serrano C; Torres-Espín A; Hernández J; Alvarez-Palomo AB; Requena J; Gasull X; Edel MJ; Navarro X
    Cell Transplant; 2016 Oct; 25(10):1833-1852. PubMed ID: 27075820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tissue-engineered regeneration of completely transected spinal cord using induced neural stem cells and gelatin-electrospun poly (lactide-co-glycolide)/polyethylene glycol scaffolds.
    Liu C; Huang Y; Pang M; Yang Y; Li S; Liu L; Shu T; Zhou W; Wang X; Rong L; Liu B
    PLoS One; 2015; 10(3):e0117709. PubMed ID: 25803031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human induced neural stem cells support functional recovery in spinal cord injury models.
    Son D; Zheng J; Kim IY; Kang PJ; Park K; Priscilla L; Hong W; Yoon BS; Park G; Yoo JE; Song G; Lee JB; You S
    Exp Mol Med; 2023 Jun; 55(6):1182-1192. PubMed ID: 37258581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pre-evaluated safe human iPSC-derived neural stem cells promote functional recovery after spinal cord injury in common marmoset without tumorigenicity.
    Kobayashi Y; Okada Y; Itakura G; Iwai H; Nishimura S; Yasuda A; Nori S; Hikishima K; Konomi T; Fujiyoshi K; Tsuji O; Toyama Y; Yamanaka S; Nakamura M; Okano H
    PLoS One; 2012; 7(12):e52787. PubMed ID: 23300777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Grafted human-induced pluripotent stem-cell-derived neurospheres promote motor functional recovery after spinal cord injury in mice.
    Nori S; Okada Y; Yasuda A; Tsuji O; Takahashi Y; Kobayashi Y; Fujiyoshi K; Koike M; Uchiyama Y; Ikeda E; Toyama Y; Yamanaka S; Nakamura M; Okano H
    Proc Natl Acad Sci U S A; 2011 Oct; 108(40):16825-30. PubMed ID: 21949375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mash-1 modified neural stem cells transplantation promotes neural stem cells differentiation into neurons to further improve locomotor functional recovery in spinal cord injury rats.
    Deng M; Xie P; Chen Z; Zhou Y; Liu J; Ming J; Yang J
    Gene; 2021 May; 781():145528. PubMed ID: 33631250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induced neural stem cells from distinct genetic backgrounds exhibit different reprogramming status.
    Kim SM; Lim KT; Kwak TH; Lee SC; Im JH; Hali S; In Hwang S; Kim D; Hwang J; Kim KP; Chung HJ; Kim JB; Ko K; Chung HM; Lee HT; Schöler HR; Han DW
    Stem Cell Res; 2016 Mar; 16(2):460-8. PubMed ID: 26930613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term selective stimulation of transplanted neural stem/progenitor cells for spinal cord injury improves locomotor function.
    Kawai M; Imaizumi K; Ishikawa M; Shibata S; Shinozaki M; Shibata T; Hashimoto S; Kitagawa T; Ago K; Kajikawa K; Shibata R; Kamata Y; Ushiba J; Koga K; Furue H; Matsumoto M; Nakamura M; Nagoshi N; Okano H
    Cell Rep; 2021 Nov; 37(8):110019. PubMed ID: 34818559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transplantation of neural stem cells preconditioned with high‑mobility group box 1 facilitates functional recovery after spinal cord injury in rats.
    Xue X; Zhang L; Yin X; Chen XX; Chen ZF; Wang CX; Xiang Y; Liu MY; Zhao JH
    Mol Med Rep; 2020 Dec; 22(6):4725-4733. PubMed ID: 33174002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human induced pluripotent stem cell-derived neural stem cells survive, migrate, differentiate, and improve neurologic function in a rat model of middle cerebral artery occlusion.
    Yuan T; Liao W; Feng NH; Lou YL; Niu X; Zhang AJ; Wang Y; Deng ZF
    Stem Cell Res Ther; 2013 Jun; 4(3):73. PubMed ID: 23769173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor.
    Ring KL; Tong LM; Balestra ME; Javier R; Andrews-Zwilling Y; Li G; Walker D; Zhang WR; Kreitzer AC; Huang Y
    Cell Stem Cell; 2012 Jul; 11(1):100-9. PubMed ID: 22683203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Grafted Human iPS Cell-Derived Oligodendrocyte Precursor Cells Contribute to Robust Remyelination of Demyelinated Axons after Spinal Cord Injury.
    Kawabata S; Takano M; Numasawa-Kuroiwa Y; Itakura G; Kobayashi Y; Nishiyama Y; Sugai K; Nishimura S; Iwai H; Isoda M; Shibata S; Kohyama J; Iwanami A; Toyama Y; Matsumoto M; Nakamura M; Okano H
    Stem Cell Reports; 2016 Jan; 6(1):1-8. PubMed ID: 26724902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural stem cell mediated recovery is enhanced by Chondroitinase ABC pretreatment in chronic cervical spinal cord injury.
    Suzuki H; Ahuja CS; Salewski RP; Li L; Satkunendrarajah K; Nagoshi N; Shibata S; Fehlings MG
    PLoS One; 2017; 12(8):e0182339. PubMed ID: 28771534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Caudalized human iPSC-derived neural progenitor cells produce neurons and glia but fail to restore function in an early chronic spinal cord injury model.
    Nutt SE; Chang EA; Suhr ST; Schlosser LO; Mondello SE; Moritz CT; Cibelli JB; Horner PJ
    Exp Neurol; 2013 Oct; 248():491-503. PubMed ID: 23891888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo conversion of rat astrocytes into neuronal cells through neural stem cells in injured spinal cord with a single zinc-finger transcription factor.
    Zarei-Kheirabadi M; Hesaraki M; Kiani S; Baharvand H
    Stem Cell Res Ther; 2019 Dec; 10(1):380. PubMed ID: 31842989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transplantation of induced neural stem cells (iNSCs) into chronically demyelinated corpus callosum ameliorates motor deficits.
    Sullivan GM; Knutsen AK; Peruzzotti-Jametti L; Korotcov A; Bosomtwi A; Dardzinski BJ; Bernstock JD; Rizzi S; Edenhofer F; Pluchino S; Armstrong RC
    Acta Neuropathol Commun; 2020 Jun; 8(1):84. PubMed ID: 32517808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined NgR vaccination and neural stem cell transplantation promote functional recovery after spinal cord injury in adult rats.
    Xu CJ; Xu L; Huang LD; Li Y; Yu PP; Hang Q; Xu XM; Lu PH
    Neuropathol Appl Neurobiol; 2011 Feb; 37(2):135-55. PubMed ID: 20819171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Treatment with a Gamma-Secretase Inhibitor Promotes Functional Recovery in Human iPSC- Derived Transplants for Chronic Spinal Cord Injury.
    Okubo T; Nagoshi N; Kohyama J; Tsuji O; Shinozaki M; Shibata S; Kase Y; Matsumoto M; Nakamura M; Okano H
    Stem Cell Reports; 2018 Dec; 11(6):1416-1432. PubMed ID: 30503258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transplantation of human urine-derived neural progenitor cells after spinal cord injury in rats.
    Liu A; Kang S; Yu P; Shi L; Zhou L
    Neurosci Lett; 2020 Sep; 735():135201. PubMed ID: 32585253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.