BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 25294883)

  • 1. Sumoylated human histone H4 prevents chromatin compaction by inhibiting long-range internucleosomal interactions.
    Dhall A; Wei S; Fierz B; Woodcock CL; Lee TH; Chatterjee C
    J Biol Chem; 2014 Dec; 289(49):33827-37. PubMed ID: 25294883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Histone H4-K16 acetylation controls chromatin structure and protein interactions.
    Shogren-Knaak M; Ishii H; Sun JM; Pazin MJ; Davie JR; Peterson CL
    Science; 2006 Feb; 311(5762):844-7. PubMed ID: 16469925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid Semisynthesis of Acetylated and Sumoylated Histone Analogs.
    Dhall A; Weller CE; Chatterjee C
    Methods Enzymol; 2016; 574():149-165. PubMed ID: 27423861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. "Direct" and "Indirect" Effects of Histone Modifications: Modulation of Sterical Bulk as a Novel Source of Functionality.
    Krajewski WA
    Bioessays; 2020 Jan; 42(1):e1900136. PubMed ID: 31805213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sumoylation of the human histone H4 tail inhibits p300-mediated transcription by RNA polymerase II in cellular extracts.
    Leonen CJA; Shimada M; Weller CE; Nakadai T; Hsu PL; Tyson EL; Mishra A; Shelton PM; Sadilek M; Hawkins RD; Zheng N; Roeder RG; Chatterjee C
    Elife; 2021 Nov; 10():. PubMed ID: 34747692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The C-terminus of histone H2B is involved in chromatin compaction specifically at telomeres, independently of its monoubiquitylation at lysine 123.
    Wang CY; Hua CY; Hsu HE; Hsu CL; Tseng HY; Wright DE; Hsu PH; Jen CH; Lin CY; Wu MY; Tsai MD; Kao CF
    PLoS One; 2011; 6(7):e22209. PubMed ID: 21829450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Histone H4 K16Q mutation, an acetylation mimic, causes structural disorder of its N-terminal basic patch in the nucleosome.
    Zhou BR; Feng H; Ghirlando R; Kato H; Gruschus J; Bai Y
    J Mol Biol; 2012 Aug; 421(1):30-7. PubMed ID: 22575889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural characterization of H3K56Q nucleosomes and nucleosomal arrays.
    Watanabe S; Resch M; Lilyestrom W; Clark N; Hansen JC; Peterson C; Luger K
    Biochim Biophys Acta; 2010; 1799(5-6):480-6. PubMed ID: 20100606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High mobility group nucleosomal binding domain 2 (HMGN2) SUMOylation by the SUMO E3 ligase PIAS1 decreases the binding affinity to nucleosome core particles.
    Wu J; Kim S; Kwak MS; Jeong JB; Min HJ; Yoon HG; Ahn JH; Shin JS
    J Biol Chem; 2014 Jul; 289(29):20000-11. PubMed ID: 24872413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comprehensive structural analysis of mutant nucleosomes containing lysine to glutamine (KQ) substitutions in the H3 and H4 histone-fold domains.
    Iwasaki W; Tachiwana H; Kawaguchi K; Shibata T; Kagawa W; Kurumizaka H
    Biochemistry; 2011 Sep; 50(36):7822-32. PubMed ID: 21812398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A distinct switch in interactions of the histone H4 tail domain upon salt-dependent folding of nucleosome arrays.
    Pepenella S; Murphy KJ; Hayes JJ
    J Biol Chem; 2014 Sep; 289(39):27342-27351. PubMed ID: 25122771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 30 nm chromatin fibre decompaction requires both H4-K16 acetylation and linker histone eviction.
    Robinson PJ; An W; Routh A; Martino F; Chapman L; Roeder RG; Rhodes D
    J Mol Biol; 2008 Sep; 381(4):816-25. PubMed ID: 18653199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemically Sumoylated Histone H4 Stimulates Intranucleosomal Demethylation by the LSD1-CoREST Complex.
    Dhall A; Weller CE; Chu A; Shelton PMM; Chatterjee C
    ACS Chem Biol; 2017 Sep; 12(9):2275-2280. PubMed ID: 28832116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies of biochemical crosstalk in chromatin with semisynthetic histones.
    Leonen CJA; Upadhyay E; Chatterjee C
    Curr Opin Chem Biol; 2018 Aug; 45():27-34. PubMed ID: 29494828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The NuA4 Core Complex Acetylates Nucleosomal Histone H4 through a Double Recognition Mechanism.
    Xu P; Li C; Chen Z; Jiang S; Fan S; Wang J; Dai J; Zhu P; Chen Z
    Mol Cell; 2016 Sep; 63(6):965-75. PubMed ID: 27594449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site specificity analysis of Piccolo NuA4-mediated acetylation for different histone complexes.
    Kuo YM; Henry RA; Tan S; Côté J; Andrews AJ
    Biochem J; 2015 Dec; 472(2):239-48. PubMed ID: 26420880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Post-translational modifications and chromatin dynamics.
    Tolsma TO; Hansen JC
    Essays Biochem; 2019 Apr; 63(1):89-96. PubMed ID: 31015385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetically encoding lysine modifications on histone H4.
    Wilkins BJ; Hahn LE; Heitmüller S; Frauendorf H; Valerius O; Braus GH; Neumann H
    ACS Chem Biol; 2015 Apr; 10(4):939-44. PubMed ID: 25590375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Histone fold modifications control nucleosome unwrapping and disassembly.
    Simon M; North JA; Shimko JC; Forties RA; Ferdinand MB; Manohar M; Zhang M; Fishel R; Ottesen JJ; Poirier MG
    Proc Natl Acad Sci U S A; 2011 Aug; 108(31):12711-6. PubMed ID: 21768347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The H4 tail domain participates in intra- and internucleosome interactions with protein and DNA during folding and oligomerization of nucleosome arrays.
    Kan PY; Caterino TL; Hayes JJ
    Mol Cell Biol; 2009 Jan; 29(2):538-46. PubMed ID: 19001093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.