These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 25294977)

  • 1. Self-rectifying performance in the sandwiched structure of Ag/In-Ga-Zn-O/Pt bipolar resistive switching memory.
    Yan X; Hao H; Chen Y; Shi S; Zhang E; Lou J; Liu B
    Nanoscale Res Lett; 2014; 9(1):548. PubMed ID: 25294977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ti-Doped GaO
    Park JH; Jeon DS; Kim TG
    ACS Appl Mater Interfaces; 2017 Dec; 9(49):43336-43342. PubMed ID: 29139293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Schottky barrier mediated single-polarity resistive switching in Pt layer-included TiO(x) memory device.
    Chung YL; Lai PY; Chen YC; Chen JS
    ACS Appl Mater Interfaces; 2011 Jun; 3(6):1918-24. PubMed ID: 21574659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of the Resistive Switching Mechanisms and Rectification Characteristics of HfO₂-Based Resistive Random Access Memory Devices with Different Electrode Materials.
    Khorolsuren B; Lu S; Sun C; Jin F; Mo W; Song J; Dong K
    J Nanosci Nanotechnol; 2020 Oct; 20(10):6489-6494. PubMed ID: 32385003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forming-free and self-rectifying resistive switching of the simple Pt/TaOx/n-Si structure for access device-free high-density memory application.
    Gao S; Zeng F; Li F; Wang M; Mao H; Wang G; Song C; Pan F
    Nanoscale; 2015 Apr; 7(14):6031-8. PubMed ID: 25765948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoscale resistive switching Schottky contacts on self-assembled Pt nanodots on SrTiO(3).
    Lee H; Kim H; Van TN; Kim DW; Park JY
    ACS Appl Mater Interfaces; 2013 Nov; 5(22):11668-72. PubMed ID: 24152094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Li-Doping Effect on Characteristics of ZnO Thin Films Resistive Random Access Memory.
    Zhao X; Song P; Gai H; Li Y; Ai C; Wen D
    Micromachines (Basel); 2020 Sep; 11(10):. PubMed ID: 32987957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rectifying switching characteristics of Pt/ZnO/Pt structure based resistive memory.
    Wang J; Song Z; Xu K; Liu M
    J Nanosci Nanotechnol; 2010 Nov; 10(11):7088-91. PubMed ID: 21137871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding the Coexistence of Two Bipolar Resistive Switching Modes with Opposite Polarity in Pt/TiO
    Zhang H; Yoo S; Menzel S; Funck C; Cüppers F; Wouters DJ; Hwang CS; Waser R; Hoffmann-Eifert S
    ACS Appl Mater Interfaces; 2018 Sep; 10(35):29766-29778. PubMed ID: 30088755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uniform self-rectifying resistive random-access memory based on an MXene-TiO
    Zang C; Li B; Sun Y; Feng S; Wang XZ; Wang X; Sun DM
    Nanoscale Adv; 2022 Nov; 4(23):5062-5069. PubMed ID: 36504734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of Top Electrodes (Cu, Ag, and Al) on Resistive Switching behaviour of Cu-rich Cu
    Kumar Yadav A; Prakash C; Pandey A; Dixit A
    Chemphyschem; 2023 Nov; 24(21):e202300142. PubMed ID: 37646108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resistive Switching Characteristics of Li-Doped ZnO Thin Films Based on Magnetron Sputtering.
    Zhao X; Li Y; Ai C; Wen D
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31003535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The current limit and self-rectification functionalities in the TiO
    Yoon JH; Kwon DE; Kim Y; Kwon YJ; Yoon KJ; Park TH; Shao XL; Hwang CS
    Nanoscale; 2017 Aug; 9(33):11920-11928. PubMed ID: 28786468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Composition-ratio influence on resistive switching behavior of solution-processed InGaZnO-based thin-film.
    Hwang YH; Hwang I; Cho WJ
    J Nanosci Nanotechnol; 2014 Nov; 14(11):8196-200. PubMed ID: 25958499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering of self-rectifying filamentary resistive switching in LiNbO
    You T; Huang K; Zhao X; Yi A; Chen C; Ren W; Jin T; Lin J; Shuai Y; Luo W; Zhou M; Yu W; Ou X
    Sci Rep; 2019 Dec; 9(1):19134. PubMed ID: 31836794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-rectifying bipolar resistive switching memory based on an iron oxide and graphene oxide hybrid.
    Oh SI; Rani JR; Hong SM; Jang JH
    Nanoscale; 2017 Oct; 9(40):15314-15322. PubMed ID: 28820212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Key concepts behind forming-free resistive switching incorporated with rectifying transport properties.
    Shuai Y; Ou X; Luo W; Mücklich A; Bürger D; Zhou S; Wu C; Chen Y; Zhang W; Helm M; Mikolajick T; Schmidt OG; Schmidt H
    Sci Rep; 2013; 3():2208. PubMed ID: 23860408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Schottky Emission Distance and Barrier Height Properties of Bipolar Switching Gd:SiOx RRAM Devices under Different Oxygen Concentration Environments.
    Chen KH; Tsai TM; Cheng CM; Huang SJ; Chang KC; Liang SP; Young TF
    Materials (Basel); 2017 Dec; 11(1):. PubMed ID: 29283368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunneling of photon-generated carrier in the interface barrier induced resistive switching memory behaviour.
    Sun B; Guo T; Zhou G; Ranjan S; Hou W; Hou Y; Zhao Y
    J Colloid Interface Sci; 2019 Oct; 553():682-687. PubMed ID: 31252184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A layered (n-C
    Kim SY; Yang JM; Lee SH; Park NG
    Nanoscale; 2021 Aug; 13(29):12475-12483. PubMed ID: 34477612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.