These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 25295171)

  • 1. Application of Patterson-function direct methods to materials characterization.
    Rius J
    IUCrJ; 2014 Sep; 1(Pt 5):291-304. PubMed ID: 25295171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Patterson-function direct methods for structure determination of organic compounds from powder diffraction data. XVI.
    Rius J
    Acta Crystallogr A; 2011 Jan; 67(Pt 1):63-7. PubMed ID: 21173474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of δ recycling to electron automated diffraction tomography data from inorganic crystalline nanovolumes.
    Rius J; Mugnaioli E; Vallcorba O; Kolb U
    Acta Crystallogr A; 2013 Jul; 69(Pt 4):396-407. PubMed ID: 23778096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. "Ab initio" structure solution from electron diffraction data obtained by a combination of automated diffraction tomography and precession technique.
    Mugnaioli E; Gorelik T; Kolb U
    Ultramicroscopy; 2009 May; 109(6):758-65. PubMed ID: 19269095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ab initio determination of heavy oxide perovskite related structures from precession electron diffraction data.
    Boulahya K; Ruiz-González L; Parras M; González-Calbet JM; Nickolsky MS; Nicolopoulos S
    Ultramicroscopy; 2007; 107(6-7):445-52. PubMed ID: 17254714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct phasing from Patterson syntheses by δ recycling.
    Rius J
    Acta Crystallogr A; 2012 Jan; 68(Pt 1):77-81. PubMed ID: 22186285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patterson function and δ recycling: derivation of the phasing equations.
    Rius J
    Acta Crystallogr A; 2012 May; 68(Pt 3):399-400. PubMed ID: 22514072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The structure of denisovite, a fibrous nanocrystalline polytypic disordered 'very complex' silicate, studied by a synergistic multi-disciplinary approach employing methods of electron crystallography and X-ray powder diffraction.
    Rozhdestvenskaya IV; Mugnaioli E; Schowalter M; Schmidt MU; Czank M; Depmeier W; Rosenauer A
    IUCrJ; 2017 May; 4(Pt 3):223-242. PubMed ID: 28512570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extending the S-FFT direct-methods algorithm to density functions with positive and negative peaks. XIV.
    Rius J; Frontera C
    Acta Crystallogr A; 2008 Nov; 64(Pt 6):670-4. PubMed ID: 18931422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure refinement from precession electron diffraction data.
    Palatinus L; Jacob D; Cuvillier P; Klementová M; Sinkler W; Marks LD
    Acta Crystallogr A; 2013 Mar; 69(Pt 2):171-88. PubMed ID: 23403968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using electron microscopy to complement X-ray powder diffraction data to solve complex crystal structures.
    McCusker LB; Baerlocher C
    Chem Commun (Camb); 2009 Mar; (12):1439-51. PubMed ID: 19277355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic products in coordination networks: ab initio X-ray powder diffraction analysis.
    Martí-Rujas J; Kawano M
    Acc Chem Res; 2013 Feb; 46(2):493-505. PubMed ID: 23252592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of Reflection Intensities for the Components of Multiple Laue Diffraction Spots. III. Using a Real-Space Density Modification Method.
    Hao Q; Harding MM; Campbell JW
    J Synchrotron Radiat; 1995 Jan; 2(Pt 1):27-30. PubMed ID: 16714783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solving crystal structures from two-wavelength X-ray powder diffraction data - breaking the phase ambiguity in the noncentrosymmetric case.
    Gu YX; Liu YD; Hao Q; Fan HF
    Acta Crystallogr A; 2000 Nov; 56 (Pt 6)():592-5. PubMed ID: 11058846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure refinement using precession electron diffraction tomography and dynamical diffraction: tests on experimental data.
    Palatinus L; Corrêa CA; Steciuk G; Jacob D; Roussel P; Boullay P; Klementová M; Gemmi M; Kopeček J; Domeneghetti MC; Cámara F; Petříček V
    Acta Crystallogr B Struct Sci Cryst Eng Mater; 2015 Dec; 71(Pt 6):740-51. PubMed ID: 26634732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural elucidation of microcrystalline MOFs from powder X-ray diffraction.
    Martí-Rujas J
    Dalton Trans; 2020 Oct; 49(40):13897-13916. PubMed ID: 33047745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ab initio determination of the framework structure of the heavy-metal oxide Cs(x)Nb2.54W2.46O14 from 100 kV precession electron diffraction data.
    Weirich TE; Portillo J; Cox G; Hibst H; Nicolopoulos S
    Ultramicroscopy; 2006 Feb; 106(3):164-75. PubMed ID: 16137828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LACDIF, a new electron diffraction technique obtained with the LACBED configuration and a C(s) corrector: comparison with electron precession.
    Morniroli JP; Houdellier F; Roucau C; Puiggalí J; Gestí S; Redjaïmia A
    Ultramicroscopy; 2008 Jan; 108(2):100-15. PubMed ID: 17517476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Erratum: Eyestalk Ablation to Increase Ovarian Maturation in Mud Crabs.
    J Vis Exp; 2023 May; (195):. PubMed ID: 37235796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of powder diffraction on the structural characterization of organic crystalline materials.
    Tremayne M
    Philos Trans A Math Phys Eng Sci; 2004 Dec; 362(1825):2691-707. PubMed ID: 15539365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.