BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 25295224)

  • 1. Texaphyrins and water-soluble zinc(II) ionophores: development, mechanism of anticancer activity, and synergistic effects.
    Preihs C; Magda DJ; Sessler JL
    Bioinorg React Mech; 2013 Dec; 9(1-4):3-14. PubMed ID: 25295224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent developments in texaphyrin chemistry and drug discovery.
    Preihs C; Arambula JF; Magda D; Jeong H; Yoo D; Cheon J; Siddik ZH; Sessler JL
    Inorg Chem; 2013 Nov; 52(21):12184-92. PubMed ID: 23557113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Texaphyrins: tumor localizing redox active expanded porphyrins.
    Arambula JF; Preihs C; Borthwick D; Magda D; Sessler JL
    Anticancer Agents Med Chem; 2011 Feb; 11(2):222-32. PubMed ID: 21355841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and anticancer properties of water-soluble zinc ionophores.
    Magda D; Lecane P; Wang Z; Hu W; Thiemann P; Ma X; Dranchak PK; Wang X; Lynch V; Wei W; Csokai V; Hacia JG; Sessler JL
    Cancer Res; 2008 Jul; 68(13):5318-25. PubMed ID: 18593933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal ionophores - an emerging class of anticancer drugs.
    Ding WQ; Lind SE
    IUBMB Life; 2009 Nov; 61(11):1013-8. PubMed ID: 19859983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The potential of Zn(II) N-alkylpyridylporphyrins for anticancer therapy.
    Benov L; Craik J; Batinic-Haberle I
    Anticancer Agents Med Chem; 2011 Feb; 11(2):233-41. PubMed ID: 21355847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water-soluble porphyrins as a dual-function molecular imaging platform for MRI and fluorescence zinc sensing.
    Zhang XA; Lovejoy KS; Jasanoff A; Lippard SJ
    Proc Natl Acad Sci U S A; 2007 Jun; 104(26):10780-5. PubMed ID: 17578918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyrithione and 8-hydroxyquinolines transport lead across erythrocyte membranes.
    Lind SE; Park JS; Drexler JW
    Transl Res; 2009 Sep; 154(3):153-9. PubMed ID: 19665691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Designing salicylaldehyde isonicotinoyl hydrazones as Cu(II) ionophores with tunable chelation and release of copper for hitting redox Achilles heel of cancer cells.
    Ji Y; Dai F; Zhou B
    Free Radic Biol Med; 2018 Dec; 129():215-226. PubMed ID: 30240704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and photophysics of benzotexaphyrin: a near-infrared emitter and photosensitizer.
    Lu T; Shao P; Mathew I; Sand A; Sun W
    J Am Chem Soc; 2008 Nov; 130(47):15782-3. PubMed ID: 18983152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of texaphyrins on the oxygenation of EMT6 mouse mammary tumors.
    Donnelly ET; Liu Y; Fatunmbi YO; Lee I; Magda D; Rockwell S
    Int J Radiat Oncol Biol Phys; 2004 Apr; 58(5):1570-6. PubMed ID: 15050338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis, chemical driving forces and biological implications of flavones as Cu(II) ionophores.
    Dai F; Yan WJ; Du YT; Bao XZ; Li XZ; Zhou B
    Free Radic Biol Med; 2017 Jul; 108():554-563. PubMed ID: 28431962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of Water-Soluble Thioglycosylated
    Pandey V; Raza MK; Joshi P; Gupta I
    J Org Chem; 2020 May; 85(10):6309-6322. PubMed ID: 32320242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism and efficiency of cell death of type II photosensitizers: effect of zinc chelation.
    Pavani C; Iamamoto Y; Baptista MS
    Photochem Photobiol; 2012; 88(4):774-81. PubMed ID: 22283143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combinatorial Therapy of Zinc Metallochaperones with Mutant p53 Reactivation and Diminished Copper Binding.
    Zaman S; Yu X; Bencivenga AF; Blanden AR; Liu Y; Withers T; Na B; Blayney AJ; Gilleran J; Boothman DA; Loh SN; Kimball SD; Carpizo DR
    Mol Cancer Ther; 2019 Aug; 18(8):1355-1365. PubMed ID: 31196889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New polyethyleneglycol-functionalized texaphyrins: synthesis and in vitro biological studies.
    Wei WH; Wang Z; Mizuno T; Cortez C; Fu L; Sirisawad M; Naumovski L; Magda D; Sessler JL
    Dalton Trans; 2006 Apr; (16):1934-42. PubMed ID: 16609763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ion transport through lipid bilayers by synthetic ionophores: modulation of activity and selectivity.
    De Riccardis F; Izzo I; Montesarchio D; Tecilla P
    Acc Chem Res; 2013 Dec; 46(12):2781-90. PubMed ID: 23534613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calix[4]pyrrole Schiff base macrocycles. Novel binucleating ligands for mu-oxo iron complexes.
    Veauthier JM; Cho WS; Lynch VM; Sessler JL
    Inorg Chem; 2004 Feb; 43(4):1220-8. PubMed ID: 14966955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Texaphyrins: new drugs with diverse clinical applications in radiation and photodynamic therapy.
    Sessler JL; Miller RA
    Biochem Pharmacol; 2000 Apr; 59(7):733-9. PubMed ID: 10718331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural diversity in expanded porphyrins.
    Misra R; Chandrashekar TK
    Acc Chem Res; 2008 Feb; 41(2):265-79. PubMed ID: 18281947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.