These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 25295405)

  • 1. Co-feeding transmission in Lyme disease pathogens.
    Voordouw MJ
    Parasitology; 2015 Feb; 142(2):290-302. PubMed ID: 25295405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporating tick feeding behaviour into R
    Johnstone-Robertson SP; Diuk-Wasser MA; Davis SA
    Theor Popul Biol; 2020 Feb; 131():25-37. PubMed ID: 31730874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ecology of Borrelia burgdorferi sensu lato in Europe: transmission dynamics in multi-host systems, influence of molecular processes and effects of climate change.
    Mannelli A; Bertolotti L; Gern L; Gray J
    FEMS Microbiol Rev; 2012 Jul; 36(4):837-61. PubMed ID: 22091928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Europe-Wide Meta-Analysis of Borrelia burgdorferi Sensu Lato Prevalence in Questing Ixodes ricinus Ticks.
    Strnad M; Hönig V; Růžek D; Grubhoffer L; Rego ROM
    Appl Environ Microbiol; 2017 Aug; 83(15):. PubMed ID: 28550059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The efficacy of co-feeding as a means of maintaining Borrelia burgdorferi: a North American model system.
    Piesman J; Happ CM
    J Vector Ecol; 2001 Dec; 26(2):216-20. PubMed ID: 11813659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of mustelids in the life-cycle of ixodid ticks and transmission cycles of four tick-borne pathogens.
    Hofmeester TR; Krawczyk AI; van Leeuwen AD; Fonville M; Montizaan MGE; van den Berge K; Gouwy J; Ruyts SC; Verheyen K; Sprong H
    Parasit Vectors; 2018 Nov; 11(1):600. PubMed ID: 30458847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-feeding transmission facilitates strain coexistence in Borrelia burgdorferi, the Lyme disease agent.
    States SL; Huang CI; Davis S; Tufts DM; Diuk-Wasser MA
    Epidemics; 2017 Jun; 19():33-42. PubMed ID: 28089780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methods for rapid transfer and localization of lyme disease pathogens within the tick gut.
    Kariu T; Coleman AS; Anderson JF; Pal U
    J Vis Exp; 2011 Feb; (48):. PubMed ID: 21372782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multistrain Infections with Lyme Borreliosis Pathogens in the Tick Vector.
    Durand J; Herrmann C; Genné D; Sarr A; Gern L; Voordouw MJ
    Appl Environ Microbiol; 2017 Feb; 83(3):. PubMed ID: 27836839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fitness variation of Borrelia burgdorferi sensu stricto strains in mice.
    Hanincová K; Ogden NH; Diuk-Wasser M; Pappas CJ; Iyer R; Fish D; Schwartz I; Kurtenbach K
    Appl Environ Microbiol; 2008 Jan; 74(1):153-7. PubMed ID: 17981941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ixodes scapularis dystroglycan-like protein promotes Borrelia burgdorferi migration from the gut.
    Coumou J; Narasimhan S; Trentelman JJ; Wagemakers A; Koetsveld J; Ersoz JI; Oei A; Fikrig E; Hovius JW
    J Mol Med (Berl); 2016 Mar; 94(3):361-70. PubMed ID: 26594018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ticks infected via co-feeding transmission can transmit Lyme borreliosis to vertebrate hosts.
    Belli A; Sarr A; Rais O; Rego ROM; Voordouw MJ
    Sci Rep; 2017 Jul; 7(1):5006. PubMed ID: 28694446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pathogen transmission in relation to duration of attachment by Ixodes scapularis ticks.
    Eisen L
    Ticks Tick Borne Dis; 2018 Mar; 9(3):535-542. PubMed ID: 29398603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the lifetime host-to-tick transmission between two strains of the Lyme disease pathogen Borrelia afzelii.
    Jacquet M; Margos G; Fingerle V; Voordouw MJ
    Parasit Vectors; 2016 Dec; 9(1):645. PubMed ID: 27986081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Detection of Tick-Borne Pathogens in Humans with Tick Bites and Erythema Migrans, in the Netherlands.
    Jahfari S; Hofhuis A; Fonville M; van der Giessen J; van Pelt W; Sprong H
    PLoS Negl Trop Dis; 2016 Oct; 10(10):e0005042. PubMed ID: 27706159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Association of genetic variability within the Borrelia burgdorferi sensu lato with the ecology, epidemiology of Lyme borreliosis in Europe.
    Derdáková M; Lencáková D
    Ann Agric Environ Med; 2005; 12(2):165-72. PubMed ID: 16457468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The abundance of the Lyme disease pathogen Borrelia afzelii declines over time in the tick vector Ixodes ricinus.
    Jacquet M; Genné D; Belli A; Maluenda E; Sarr A; Voordouw MJ
    Parasit Vectors; 2017 May; 10(1):257. PubMed ID: 28545520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of Lyme disease spirochete, Borrelia burgdorferi sensu lato, including three novel genotypes in ticks (Acari: Ixodidae) collected from songbirds (Passeriformes) across Canada.
    Scott JD; Lee MK; Fernando K; Durden LA; Jorgensen DR; Mak S; Morshed MG
    J Vector Ecol; 2010 Jun; 35(1):124-39. PubMed ID: 20618658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low probability of a dilution effect for Lyme borreliosis in Belgian forests.
    Ruyts SC; Landuyt D; Ampoorter E; Heylen D; Ehrmann S; Coipan EC; Matthysen E; Sprong H; Verheyen K
    Ticks Tick Borne Dis; 2018 Jul; 9(5):1143-1152. PubMed ID: 29716838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reductions in human Lyme disease risk due to the effects of oral vaccination on tick-to-mouse and mouse-to-tick transmission.
    Voordouw MJ; Tupper H; Önder Ö; Devevey G; Graves CJ; Kemps BD; Brisson D
    Vector Borne Zoonotic Dis; 2013 Apr; 13(4):203-14. PubMed ID: 23428088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.