These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 25295630)

  • 1. Large-angle x-ray scatter in Talbot-Lau interferometry for breast imaging.
    Vedantham S; Shi L; Karellas A
    Phys Med Biol; 2014 Nov; 59(21):6387-400. PubMed ID: 25295630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scattered radiation in scanning slot mammography.
    Jing Z; Huda W; Walker JK
    Med Phys; 1998 Jul; 25(7 Pt 1):1111-7. PubMed ID: 9682196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spherical grating based x-ray Talbot interferometry.
    Cong W; Xi Y; Wang G
    Med Phys; 2015 Nov; 42(11):6514-9. PubMed ID: 26520741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Power spectrum analysis of the x-ray scatter signal in mammography and breast tomosynthesis projections.
    Sechopoulos I; Bliznakova K; Fei B
    Med Phys; 2013 Oct; 40(10):101905. PubMed ID: 24089907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A 1st generation scatter CT algorithm for electron density breast imaging which accounts for bound incoherent, coherent and multiple scatter: A Monte Carlo study.
    Alpuche Aviles JE; Pistorius S; Elbakri IA; Gordon R; Ahmad B
    J Xray Sci Technol; 2011; 19(4):477-99. PubMed ID: 25214381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correction for X-Ray Scatter and Detector Crosstalk in Dark-Field Radiography.
    Urban T; Noichl W; Engel KJ; Koehler T; Pfeiffer F
    IEEE Trans Med Imaging; 2024 Jul; 43(7):2646-2656. PubMed ID: 38451749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The second-order differential phase contrast and its retrieval for imaging with x-ray Talbot interferometry.
    Yang Y; Tang X
    Med Phys; 2012 Dec; 39(12):7237-53. PubMed ID: 23231275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fully iterative scatter corrected digital breast tomosynthesis using GPU-based fast Monte Carlo simulation and composition ratio update.
    Kim K; Lee T; Seong Y; Lee J; Jang KE; Choi J; Choi YW; Kim HH; Shin HJ; Cha JH; Cho S; Ye JC
    Med Phys; 2015 Sep; 42(9):5342-55. PubMed ID: 26328983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation framework for coherent and incoherent X-ray imaging and its application in Talbot-Lau dark-field imaging.
    Ritter A; Bartl P; Bayer F; Gödel KC; Haas W; Michel T; Pelzer G; Rieger J; Weber T; Zang A; Anton G
    Opt Express; 2014 Sep; 22(19):23276-89. PubMed ID: 25321796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. X-ray interferometry without analyzer for breast CT application: a simulation study.
    Xu J; Ham K; Dey J
    J Med Imaging (Bellingham); 2020 Mar; 7(2):023503. PubMed ID: 32258221
    [No Abstract]   [Full Text] [Related]  

  • 11. Photon detection efficiency of laboratory-based x-ray phase contrast imaging techniques for mammography: a Monte Carlo study.
    Saghamanesh S; Aghamiri SM; Kamali-Asl A; Yashiro W
    Phys Med Biol; 2017 Sep; 62(18):7394-7406. PubMed ID: 28632500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. X-ray bi-prism interferometry-A design study of proposed novel hardware.
    Gullberg GT; Shrestha U; Kim SJW; Seo Y; Fuller M
    Med Phys; 2021 Oct; 48(10):6508-6523. PubMed ID: 34554568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A preclinical Talbot-Lau prototype for x-ray dark-field imaging of human-sized objects.
    Hauke C; Bartl P; Leghissa M; Ritschl L; Sutter SM; Weber T; Zeidler J; Freudenberger J; Mertelmeier T; Radicke M; Michel T; Anton G; Meinel FG; Baehr A; Auweter S; Bondesson D; Gaass T; Dinkel J; Reiser M; Hellbach K
    Med Phys; 2018 Jun; 45(6):2565-2571. PubMed ID: 29582440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of x-ray spectra in digital mammography through Monte Carlo simulations.
    Cunha DM; Tomal A; Poletti ME
    Phys Med Biol; 2012 Apr; 57(7):1919-35. PubMed ID: 22421418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative analysis of a micro array anode structured target for hard x-ray grating interferometry.
    Zan G; Vine DJ; Yun W; Lewis SJY; Wang Q; Wang G
    Phys Med Biol; 2020 Feb; 65(3):035008. PubMed ID: 31874460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Realization of optical carpets in the Talbot and Talbot-Lau configurations.
    Case WB; Tomandl M; Deachapunya S; Arndt M
    Opt Express; 2009 Nov; 17(23):20966-74. PubMed ID: 19997335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of scatter in digital mammography from use of Monte Carlo simulations and comparison to physical measurements.
    Leon SM; Brateman LF; Wagner LK
    Med Phys; 2014 Nov; 41(11):111914. PubMed ID: 25370647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complex dark-field contrast and its retrieval in x-ray phase contrast imaging implemented with Talbot interferometry.
    Yang Y; Tang X
    Med Phys; 2014 Oct; 41(10):101914. PubMed ID: 25281966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A semianalytic model to investigate the potential applications of x-ray scatter imaging.
    Leclair RJ; Johns PC
    Med Phys; 1998 Jun; 25(6):1008-20. PubMed ID: 9650191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Grating-based darkfield imaging of human breast tissue.
    Anton G; Bayer F; Beckmann MW; Durst J; Fasching PA; Haas W; Hartmann A; Michel T; Pelzer G; Radicke M; Rauh C; Rieger J; Ritter A; Schulz-Wendtland R; Uder M; Wachter DL; Weber T; Wenkel E; Wucherer L
    Z Med Phys; 2013 Sep; 23(3):228-35. PubMed ID: 23380071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.