BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 25295729)

  • 1. Differential expression of microRNAs in Francisella tularensis-infected human macrophages: miR-155-dependent downregulation of MyD88 inhibits the inflammatory response.
    Bandyopadhyay S; Long ME; Allen LA
    PLoS One; 2014; 9(10):e109525. PubMed ID: 25295729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MiR-155 induction by F. novicida but not the virulent F. tularensis results in SHIP down-regulation and enhanced pro-inflammatory cytokine response.
    Cremer TJ; Ravneberg DH; Clay CD; Piper-Hunter MG; Marsh CB; Elton TS; Gunn JS; Amer A; Kanneganti TD; Schlesinger LS; Butchar JP; Tridandapani S
    PLoS One; 2009 Dec; 4(12):e8508. PubMed ID: 20041145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphatidylinositol 3-kinase activation attenuates the TLR2-mediated macrophage proinflammatory cytokine response to Francisella tularensis live vaccine strain.
    Medina EA; Morris IR; Berton MT
    J Immunol; 2010 Dec; 185(12):7562-72. PubMed ID: 21098227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toll-like receptor 2-mediated signaling requirements for Francisella tularensis live vaccine strain infection of murine macrophages.
    Cole LE; Shirey KA; Barry E; Santiago A; Rallabhandi P; Elkins KL; Puche AC; Michalek SM; Vogel SN
    Infect Immun; 2007 Aug; 75(8):4127-37. PubMed ID: 17517865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TLR-dependent control of Francisella tularensis infection and host inflammatory responses.
    Abplanalp AL; Morris IR; Parida BK; Teale JM; Berton MT
    PLoS One; 2009 Nov; 4(11):e7920. PubMed ID: 19936231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kdo hydrolase is required for Francisella tularensis virulence and evasion of TLR2-mediated innate immunity.
    Okan NA; Chalabaev S; Kim TH; Fink A; Ross RA; Kasper DL
    mBio; 2013 Feb; 4(1):e00638-12. PubMed ID: 23404403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fine tuning inflammation at the front door: macrophage complement receptor 3-mediates phagocytosis and immune suppression for Francisella tularensis.
    Dai S; Rajaram MV; Curry HM; Leander R; Schlesinger LS
    PLoS Pathog; 2013 Jan; 9(1):e1003114. PubMed ID: 23359218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GroEL and lipopolysaccharide from Francisella tularensis live vaccine strain synergistically activate human macrophages.
    Noah CE; Malik M; Bublitz DC; Camenares D; Sellati TJ; Benach JL; Furie MB
    Infect Immun; 2010 Apr; 78(4):1797-806. PubMed ID: 20123721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monophosphoryl Lipid A Enhances Efficacy of a Francisella tularensis LVS-Catanionic Nanoparticle Subunit Vaccine against F. tularensis Schu S4 Challenge by Augmenting both Humoral and Cellular Immunity.
    Richard K; Mann BJ; Qin A; Barry EM; Ernst RK; Vogel SN
    Clin Vaccine Immunol; 2017 Mar; 24(3):. PubMed ID: 28077440
    [No Abstract]   [Full Text] [Related]  

  • 10. Macrophages Demonstrate Guanylate-Binding Protein-Dependent and Bacterial Strain-Dependent Responses to
    Mohammadi N; Lindgren H; Yamamoto M; Martin A; Henry T; Sjöstedt A
    Front Cell Infect Microbiol; 2021; 11():784101. PubMed ID: 35004352
    [No Abstract]   [Full Text] [Related]  

  • 11. Myeloid differentiation factor-88 (MyD88) is essential for control of primary in vivo Francisella tularensis LVS infection, but not for control of intra-macrophage bacterial replication.
    Collazo CM; Sher A; Meierovics AI; Elkins KL
    Microbes Infect; 2006 Mar; 8(3):779-90. PubMed ID: 16513388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Francisella tularensis inhibits Toll-like receptor-mediated activation of intracellular signalling and secretion of TNF-alpha and IL-1 from murine macrophages.
    Telepnev M; Golovliov I; Grundström T; Tärnvik A; Sjöstedt A
    Cell Microbiol; 2003 Jan; 5(1):41-51. PubMed ID: 12542469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel catanionic surfactant vesicle vaccines protect against Francisella tularensis LVS and confer significant partial protection against F. tularensis Schu S4 strain.
    Richard K; Mann BJ; Stocker L; Barry EM; Qin A; Cole LE; Hurley MT; Ernst RK; Michalek SM; Stein DC; Deshong P; Vogel SN
    Clin Vaccine Immunol; 2014 Feb; 21(2):212-26. PubMed ID: 24351755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contributions of TolC Orthologs to
    Kopping EJ; Doyle CR; Sampath V; Thanassi DG
    Infect Immun; 2019 Apr; 87(4):. PubMed ID: 30670554
    [No Abstract]   [Full Text] [Related]  

  • 15. Production of IFN-γ by splenic dendritic cells during innate immune responses against Francisella tularensis LVS depends on MyD88, but not TLR2, TLR4, or TLR9.
    De Pascalis R; Rossi AP; Mittereder L; Takeda K; Akue A; Kurtz SL; Elkins KL
    PLoS One; 2020; 15(8):e0237034. PubMed ID: 32745117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Francisella tularensis Live Vaccine Strain deficient in capB and overexpressing the fusion protein of IglA, IglB, and IglC from the bfr promoter induces improved protection against F. tularensis respiratory challenge.
    Jia Q; Bowen R; Lee BY; Dillon BJ; Masleša-Galić S; Horwitz MA
    Vaccine; 2016 Sep; 34(41):4969-4978. PubMed ID: 27577555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential ability of novel attenuated targeted deletion mutants of Francisella tularensis subspecies tularensis strain SCHU S4 to protect mice against aerosol challenge with virulent bacteria: effects of host background and route of immunization.
    Conlan JW; Shen H; Golovliov I; Zingmark C; Oyston PC; Chen W; House RV; Sjöstedt A
    Vaccine; 2010 Feb; 28(7):1824-31. PubMed ID: 20018266
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Benziger PT; Kopping EJ; McLaughlin PA; Thanassi DG
    mBio; 2023 Aug; 14(4):e0113623. PubMed ID: 37404047
    [No Abstract]   [Full Text] [Related]  

  • 19. Interactions of Francisella tularensis with Alveolar Type II Epithelial Cells and the Murine Respiratory Epithelium.
    Faron M; Fletcher JR; Rasmussen JA; Apicella MA; Jones BD
    PLoS One; 2015; 10(5):e0127458. PubMed ID: 26010977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of stable, constitutively expressed, chromosomal green and red fluorescent transcriptional fusions in the select agent bacterium, Francisella tularensis Schu S4 and the surrogate type B live vaccine strain (LVS).
    Su S; Saldanha R; Pemberton A; Bangar H; Kawamoto SA; Aronow B; Hassett DJ; Lamkin TJ
    Appl Microbiol Biotechnol; 2013 Oct; 97(20):9029-41. PubMed ID: 23852642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.