These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 25296175)

  • 1. Comparison of amino acids physico-chemical properties and usage of late embryogenesis abundant proteins, hydrophilins and WHy domain.
    Jaspard E; Hunault G
    PLoS One; 2014; 9(10):e109570. PubMed ID: 25296175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational and statistical analyses of amino acid usage and physico-chemical properties of the twelve late embryogenesis abundant protein classes.
    Jaspard E; Macherel D; Hunault G
    PLoS One; 2012; 7(5):e36968. PubMed ID: 22615859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional dissection of hydrophilins during in vitro freeze protection.
    Reyes JL; Campos F; Wei H; Arora R; Yang Y; Karlson DT; Covarrubias AA
    Plant Cell Environ; 2008 Dec; 31(12):1781-90. PubMed ID: 18761701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Silico Characterisation of the Late Embryogenesis Abundant (LEA) Protein Families and Their Role in Desiccation Tolerance in
    Pantelić A; Stevanović S; Komić SM; Kilibarda N; Vidović M
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35408906
    [No Abstract]   [Full Text] [Related]  

  • 5. Conformation of a group 2 late embryogenesis abundant protein from soybean. Evidence of poly (L-proline)-type II structure.
    Soulages JL; Kim K; Arrese EL; Walters C; Cushman JC
    Plant Physiol; 2003 Mar; 131(3):963-75. PubMed ID: 12644649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of two hydrophilins that contribute to the desiccation and freezing tolerance of yeast (Saccharomyces cerevisiae) cells.
    Dang NX; Hincha DK
    Cryobiology; 2011 Jun; 62(3):188-93. PubMed ID: 21420397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural investigation of disordered stress proteins. Comparison of full-length dehydrins with isolated peptides of their conserved segments.
    Mouillon JM; Gustafsson P; Harryson P
    Plant Physiol; 2006 Jun; 141(2):638-50. PubMed ID: 16565295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit.
    Garay-Arroyo A; Colmenero-Flores JM; Garciarrubio A; Covarrubias AA
    J Biol Chem; 2000 Feb; 275(8):5668-74. PubMed ID: 10681550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plant dehydrins--tissue location, structure and function.
    Rorat T
    Cell Mol Biol Lett; 2006; 11(4):536-56. PubMed ID: 16983453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Desiccation tolerance: an unusual window into stress biology.
    Koshland D; Tapia H
    Mol Biol Cell; 2019 Mar; 30(6):737-741. PubMed ID: 30870092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LEA Proteins and the Evolution of the WHy Domain.
    Mertens J; Aliyu H; Cowan DA
    Appl Environ Microbiol; 2018 Aug; 84(15):. PubMed ID: 29802195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrophilins in the filamentous fungus Neosartorya fischeri (Aspergillus fischeri) have protective activity against several types of microbial water stress.
    van Leeuwen MR; Wyatt TT; van Doorn TM; Lugones LG; Wösten HA; Dijksterhuis J
    Environ Microbiol Rep; 2016 Feb; 8(1):45-52. PubMed ID: 26487515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plant dehydrins and stress tolerance: versatile proteins for complex mechanisms.
    Hanin M; Brini F; Ebel C; Toda Y; Takeda S; Masmoudi K
    Plant Signal Behav; 2011 Oct; 6(10):1503-9. PubMed ID: 21897131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Late Embryogenesis Abundant Protein-Client Protein Interactions.
    Dirk LMA; Abdel CG; Ahmad I; Neta ICS; Pereira CC; Pereira FECB; Unêda-Trevisoli SH; Pinheiro DG; Downie AB
    Plants (Basel); 2020 Jun; 9(7):. PubMed ID: 32610443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Cloning and bioinformatic analysis of the cDNA encoding a novel heat-shock factor OsHSF13 in Oryza sative L].
    Wu LJ; Zhang Z; Peng RH; Xiong AS; Liu JG; Fu XY; Gao F; Yao QH
    Fen Zi Xi Bao Sheng Wu Xue Bao; 2007 Jun; 40(3):251-7. PubMed ID: 17674779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. sHSPdb: a database for the analysis of small Heat Shock Proteins.
    Jaspard E; Hunault G
    BMC Plant Biol; 2016 Jun; 16(1):135. PubMed ID: 27297221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The biology of tardigrade disordered proteins in extreme stress tolerance.
    Hesgrove C; Boothby TC
    Cell Commun Signal; 2020 Nov; 18(1):178. PubMed ID: 33148259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and Functional Insights into the Cryoprotection of Membranes by the Intrinsically Disordered Dehydrins.
    Clarke MW; Boddington KF; Warnica JM; Atkinson J; McKenna S; Madge J; Barker CH; Graether SP
    J Biol Chem; 2015 Nov; 290(45):26900-26913. PubMed ID: 26370084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LEAPdb: a database for the late embryogenesis abundant proteins.
    Hunault G; Jaspard E
    BMC Genomics; 2010 Apr; 11():221. PubMed ID: 20359361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LEAping to conclusions: a computational reanalysis of late embryogenesis abundant proteins and their possible roles.
    Wise MJ
    BMC Bioinformatics; 2003 Oct; 4():52. PubMed ID: 14583099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.