BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 25296204)

  • 1. The importance of protozoan bacterivory in a subtropical environment (Lobo-Broa Reservoir, SP, Brazil).
    Mansano AS; Hisatugo KF; Hayashi LH; Regali-Seleghim MH
    Braz J Biol; 2014 Aug; 74(3):569-78. PubMed ID: 25296204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protozoans bacterivory in a subtropical environment during a dry/cold and a rainy/warm season.
    Hisatugo KF; Mansano AS; Seleghim MH
    Braz J Microbiol; 2014; 45(1):143-51. PubMed ID: 24948925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benthic bacterial production and protozoan predation in a silty freshwater environment.
    Wieltschnig C; Fischer UR; Kirschner AK; Velimirov B
    Microb Ecol; 2003 Jul; 46(1):62-72. PubMed ID: 12739079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ciliates are the dominant grazers on pico- and nanoplankton in a shallow, naturally highly eutrophic lake.
    Zingel P; Agasild H; Nõges T; Kisand V
    Microb Ecol; 2007 Jan; 53(1):134-42. PubMed ID: 17186145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial community structure and dynamics in the largest natural French lake (Lake Bourget).
    Comte J; Jacquet S; Viboud S; Fontvieille D; Millery A; Paolini G; Domaizon I
    Microb Ecol; 2006 Jul; 52(1):72-89. PubMed ID: 16733620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The bacterivory of interstitial ciliates in association with bacterial biomass and production in the hyporheic zone of a lowland stream.
    Königs S; Cleven EJ
    FEMS Microbiol Ecol; 2007 Jul; 61(1):54-64. PubMed ID: 17506825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prey-Specific Growth Responses of Freshwater Flagellate Communities Induced by Morphologically Distinct Bacteria from the Genus Limnohabitans.
    Grujčić V; Kasalický V; Šimek K
    Appl Environ Microbiol; 2015 Aug; 81(15):4993-5002. PubMed ID: 25979896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial food webs in boreal humic lakes and reservoirs: ciliates as a major factor related to the dynamics of the most active bacteria.
    Tadonléké RD; Planas D; Lucotte M
    Microb Ecol; 2005 Feb; 49(2):325-41. PubMed ID: 15965722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial Food-Web Drivers in Tropical Reservoirs.
    Domingues CD; da Silva LH; Rangel LM; de Magalhães L; de Melo Rocha A; Lobão LM; Paiva R; Roland F; Sarmento H
    Microb Ecol; 2017 Apr; 73(3):505-520. PubMed ID: 27900461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trophic interactions within the microbial food web in a tropical floodplain lake (Laguna Bufeos, Bolivia).
    Rejas D; Muylaert K; De Meester L
    Rev Biol Trop; 2005; 53(1-2):85-96. PubMed ID: 17354422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size-selective grazing of coastal bacterioplankton by natural assemblages of pigmented flagellates, colorless flagellates, and ciliates.
    Epstein SS; Shiaris MP
    Microb Ecol; 1992 May; 23(3):211-25. PubMed ID: 24192932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prey selectivity of bacterivorous protists in different size fractions of reservoir water amended with nutrients.
    Jezbera J; Hornák K; Simek K
    Environ Microbiol; 2006 Aug; 8(8):1330-9. PubMed ID: 16872397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential Response of Cafeteria roenbergensis to Different Bacterial and Archaeal Prey Characteristics.
    De Corte D; Paredes G; Yokokawa T; Sintes E; Herndl GJ
    Microb Ecol; 2019 Jul; 78(1):1-5. PubMed ID: 30448922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of virus-induced lysis and protozoan grazing to benthic bacterial mortality estimated simultaneously in microcosms.
    Fischer UR; Wieltschnig C; Kirschner AK; Velimirov B
    Environ Microbiol; 2006 Aug; 8(8):1394-407. PubMed ID: 16872403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CARD-FISH and prey tracer techniques reveal the role of overlooked flagellate groups as major bacterivores in freshwater hypertrophic shallow lakes.
    Šimek K; Mukherjee I; Nedoma J; de Paula CCP; Jezberová J; Sirová D; Vrba J
    Environ Microbiol; 2022 Sep; 24(9):4256-4273. PubMed ID: 34933408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altering the balance between bacterial production and protistan bacterivory triggers shifts in freshwater bacterial community composition.
    Simek K; Nedoma J; Pernthaler J; Posch T; Dolan JR
    Antonie Van Leeuwenhoek; 2002 Aug; 81(1-4):453-63. PubMed ID: 12448742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protist herbivory: a key pathway in the pelagic food web of Lake Tanganyika.
    Tarbe AL; Unrein F; Stenuite S; Pirlot S; Sarmento H; Sinyinza D; Descy JP
    Microb Ecol; 2011 Aug; 62(2):314-23. PubMed ID: 21336683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in microbial food web structure in response to changed environmental trophic status: a case study of the Vranjic Basin (Adriatic Sea).
    Solić M; Krstulović N; Kuspilić G; Nincević Gladan Z; Bojanić N; Sestanović S; Santić D; Ordulj M
    Mar Environ Res; 2010 Aug; 70(2):239-49. PubMed ID: 20570345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mixotrophic Phytoflagellate Bacterivory Field Measurements Strongly Biased by Standard Approaches: A Case Study.
    Anderson R; Jürgens K; Hansen PJ
    Front Microbiol; 2017; 8():1398. PubMed ID: 28798734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of top-down and bottom-up manipulations on the R-BT065 subcluster of beta-proteobacteria, an abundant group in bacterioplankton of a freshwater reservoir.
    Simek K; Hornák K; Jezbera J; Masín M; Nedoma J; Gasol JM; Schauer M
    Appl Environ Microbiol; 2005 May; 71(5):2381-90. PubMed ID: 15870325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.