These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 25296329)

  • 1. Equations of interdoublet separation during flagella motion reveal mechanisms of wave propagation and instability.
    Bayly PV; Wilson KS
    Biophys J; 2014 Oct; 107(7):1756-72. PubMed ID: 25296329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of unstable modes distinguishes mathematical models of flagellar motion.
    Bayly PV; Wilson KS
    J R Soc Interface; 2015 May; 12(106):. PubMed ID: 25833248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite element models of flagella with sliding radial spokes and interdoublet links exhibit propagating waves under steady dynein loading.
    Hu T; Bayly PV
    Cytoskeleton (Hoboken); 2018 May; 75(5):185-200. PubMed ID: 29316355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A model of flagellar and ciliary functioning which uses the forces transverse to the axoneme as the regulator of dynein activation.
    Lindemann CB
    Cell Motil Cytoskeleton; 1994; 29(2):141-54. PubMed ID: 7820864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation of cyclic dynein-driven sliding, splitting, and reassociation in an outer doublet pair.
    Brokaw CJ
    Biophys J; 2009 Dec; 97(11):2939-47. PubMed ID: 19948123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Steady dynein forces induce flutter instability and propagating waves in mathematical models of flagella.
    Bayly PV; Dutcher SK
    J R Soc Interface; 2016 Oct; 13(123):. PubMed ID: 27798276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic curvature regulation accounts for the symmetric and asymmetric beats of Chlamydomonas flagella.
    Sartori P; Geyer VF; Scholich A; Jülicher F; Howard J
    Elife; 2016 May; 5():. PubMed ID: 27166516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computer simulation of flagellar movement X: doublet pair splitting and bend propagation modeled using stochastic dynein kinetics.
    Brokaw CJ
    Cytoskeleton (Hoboken); 2014 Apr; 71(4):273-84. PubMed ID: 24574072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexural Rigidity and Shear Stiffness of Flagella Estimated from Induced Bends and Counterbends.
    Xu G; Wilson KS; Okamoto RJ; Shao JY; Dutcher SK; Bayly PV
    Biophys J; 2016 Jun; 110(12):2759-2768. PubMed ID: 27332134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polarity and asymmetry in the arrangement of dynein and related structures in the Chlamydomonas axoneme.
    Bui KH; Yagi T; Yamamoto R; Kamiya R; Ishikawa T
    J Cell Biol; 2012 Sep; 198(5):913-25. PubMed ID: 22945936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One of the nine doublet microtubules of eukaryotic flagella exhibits unique and partially conserved structures.
    Lin J; Heuser T; Song K; Fu X; Nicastro D
    PLoS One; 2012; 7(10):e46494. PubMed ID: 23071579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of microtubule sliding patterns in Chlamydomonas flagellar axonemes reveals dynein activity on specific doublet microtubules.
    Wargo MJ; McPeek MA; Smith EF
    J Cell Sci; 2004 May; 117(Pt 12):2533-44. PubMed ID: 15128866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetry of inner dynein arms and inter-doublet links in Chlamydomonas flagella.
    Bui KH; Sakakibara H; Movassagh T; Oiwa K; Ishikawa T
    J Cell Biol; 2009 Aug; 186(3):437-46. PubMed ID: 19667131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Curvature regulation of the ciliary beat through axonemal twist.
    Sartori P; Geyer VF; Howard J; Jülicher F
    Phys Rev E; 2016 Oct; 94(4-1):042426. PubMed ID: 27841522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A microtubule-dynein tethering complex regulates the axonemal inner dynein f (I1).
    Kubo T; Hou Y; Cochran DA; Witman GB; Oda T
    Mol Biol Cell; 2018 May; 29(9):1060-1074. PubMed ID: 29540525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional significance of the outer dense fibers of mammalian sperm examined by computer simulations with the geometric clutch model.
    Lindemann CB
    Cell Motil Cytoskeleton; 1996; 34(4):258-70. PubMed ID: 8871813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The many modes of flagellar and ciliary beating: Insights from a physical analysis.
    Lindemann CB; Lesich KA
    Cytoskeleton (Hoboken); 2021 Feb; 78(2):36-51. PubMed ID: 33675288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How signals of calcium ions initiate the beats of cilia and flagella.
    Satarić MV; Nemeš T; Sekulić D; Tuszynski JA
    Biosystems; 2019 Aug; 182():42-51. PubMed ID: 31202860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Does axonemal dynein push, pull, or oscillate?
    Lindemann CB; Hunt AJ
    Cell Motil Cytoskeleton; 2003 Dec; 56(4):237-44. PubMed ID: 14584026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer simulation of flagellar movement VIII: coordination of dynein by local curvature control can generate helical bending waves.
    Brokaw CJ
    Cell Motil Cytoskeleton; 2002 Oct; 53(2):103-24. PubMed ID: 12211108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.