These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 25296380)

  • 1. Controllably interfacing with metal: a strategy for enhancing CO oxidation on oxide catalysts by surface polarization.
    Bai Y; Zhang W; Zhang Z; Zhou J; Wang X; Wang C; Huang W; Jiang J; Xiong Y
    J Am Chem Soc; 2014 Oct; 136(42):14650-3. PubMed ID: 25296380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interface-confined oxide nanostructures for catalytic oxidation reactions.
    Fu Q; Yang F; Bao X
    Acc Chem Res; 2013 Aug; 46(8):1692-701. PubMed ID: 23458033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pt-Embedded CuO
    Wu K; Fu XP; Yu WZ; Wang WW; Jia CJ; Du PP; Si R; Wang YH; Li LD; Zhou L; Sun LD; Yan CH
    ACS Appl Mater Interfaces; 2018 Oct; 10(40):34172-34183. PubMed ID: 30205674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hetero-metal cation control of CuO nanostructures and their high catalytic performance for CO oxidation.
    Huang H; Zhang L; Wu K; Yu Q; Chen R; Yang H; Peng X; Ye Z
    Nanoscale; 2012 Dec; 4(24):7832-41. PubMed ID: 23151539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal hybrid nanoparticles for catalytic organic and photochemical transformations.
    Song H
    Acc Chem Res; 2015 Mar; 48(3):491-9. PubMed ID: 25730414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon Monoxide Oxidation Promoted by Surface Polarization Charges in a CuO/Ag Hybrid Catalyst.
    Wang X; Jia C; Sharman E; Zhang G; Li X; Jiang J
    Sci Rep; 2020 Feb; 10(1):2552. PubMed ID: 32054958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Creation of Controllable High-Density Defects in Silver Nanowires for Enhanced Catalytic Property.
    Wang C; Zhang Z; Yang G; Chen Q; Yin Y; Jin M
    Nano Lett; 2016 Sep; 16(9):5669-74. PubMed ID: 27532689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design strategies for the molecular level synthesis of supported catalysts.
    Wegener SL; Marks TJ; Stair PC
    Acc Chem Res; 2012 Feb; 45(2):206-14. PubMed ID: 22004451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interfacial effects of the CuO/GO composite to mediate the side reactions of N,N-dimethylformamide fragments.
    Zhang S; Gao W; Li J; Zhou X; Qu Y
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22174-82. PubMed ID: 25437117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wet oxidation of phenol over transition metal oxide catalysts supported on Ce0.65 Zr0.35 O2 prepared by continuous hydrothermal synthesis in supercritical water.
    Kim KH; Kim JR; Ihm SK
    J Hazard Mater; 2009 Aug; 167(1-3):1158-62. PubMed ID: 19264401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Core-shell nanostructured catalysts.
    Zhang Q; Lee I; Joo JB; Zaera F; Yin Y
    Acc Chem Res; 2013 Aug; 46(8):1816-24. PubMed ID: 23268644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anchoring High-Concentration Oxygen Vacancies at Interfaces of CeO(2-x)/Cu toward Enhanced Activity for Preferential CO Oxidation.
    Chen S; Li L; Hu W; Huang X; Li Q; Xu Y; Zuo Y; Li G
    ACS Appl Mater Interfaces; 2015 Oct; 7(41):22999-3007. PubMed ID: 26444246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic combustion of volatile organic compounds.
    Everaert K; Baeyens J
    J Hazard Mater; 2004 Jun; 109(1-3):113-39. PubMed ID: 15177752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facets Matching of Platinum and Ferric Oxide in Highly Efficient Catalyst Design for Low-Temperature CO Oxidation.
    Ma Y; Li F; Ren X; Chen W; Li C; Tao P; Song C; Shang W; Huang R; Lv B; Zhu H; Deng T; Wu J
    ACS Appl Mater Interfaces; 2018 May; 10(17):15322-15327. PubMed ID: 29617108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogen spillover enhanced hydroxyl formation and catalytic activity toward CO oxidation at the metal/oxide interface.
    Jin Y; Sun G; Xiong F; Ding L; Huang W
    Chemistry; 2015 Mar; 21(11):4252-6. PubMed ID: 25650016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced catalytic activity for CO oxidation by the metal-oxide perimeter of TiO
    Lee SW; Song JT; Kim J; Oh J; Park JY
    Nanoscale; 2018 Feb; 10(8):3911-3917. PubMed ID: 29423473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The energetics of supported metal nanoparticles: relationships to sintering rates and catalytic activity.
    Campbell CT
    Acc Chem Res; 2013 Aug; 46(8):1712-9. PubMed ID: 23607711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoparticles for heterogeneous catalysis: new mechanistic insights.
    Schauermann S; Nilius N; Shaikhutdinov S; Freund HJ
    Acc Chem Res; 2013 Aug; 46(8):1673-81. PubMed ID: 23252628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Platinum-based oxygen reduction electrocatalysts.
    Wu J; Yang H
    Acc Chem Res; 2013 Aug; 46(8):1848-57. PubMed ID: 23808919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.