BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 2529676)

  • 21. Endocytosis is required for the growth of vacuolar H(+)-ATPase-defective yeast: identification of six new END genes.
    Munn AL; Riezman H
    J Cell Biol; 1994 Oct; 127(2):373-86. PubMed ID: 7929582
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Vacuolar sorting. Tracking down an elusive receptor.
    Chapman RE
    Curr Biol; 1994 Nov; 4(11):1019-22. PubMed ID: 7874484
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prevacuolar compartment morphology in vps mutants of Saccharomyces cerevisiae.
    Hedman JM; Eggleston MD; Attryde AL; Marshall PA
    Cell Biol Int; 2007 Oct; 31(10):1237-44. PubMed ID: 17543551
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mutants of Saccharomyces cerevisiae defective in vacuolar function confirm a role for the vacuole in toxic metal ion detoxification.
    Ramsay LM; Gadd GM
    FEMS Microbiol Lett; 1997 Jul; 152(2):293-8. PubMed ID: 9231423
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vacuolar acidification in Saccharomyces cerevisiae induced by elevated hydrostatic pressure is transient and is mediated by vacuolar H+-ATPase.
    Abe F; Horikoshi K
    Extremophiles; 1997 May; 1(2):89-93. PubMed ID: 9680307
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel Sec18p/NSF-dependent complex required for Golgi-to-endosome transport in yeast.
    Burd CG; Peterson M; Cowles CR; Emr SD
    Mol Biol Cell; 1997 Jun; 8(6):1089-104. PubMed ID: 9201718
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mutations in the yeast vacuolar ATPase result in the mislocalization of vacuolar proteins.
    Klionsky DJ; Nelson H; Nelson N; Yaver DS
    J Exp Biol; 1992 Nov; 172():83-92. PubMed ID: 1491235
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of three rab5-like GTPases, Ypt51p, Ypt52p, and Ypt53p, in the endocytic and vacuolar protein sorting pathways of yeast.
    Singer-Krüger B; Stenmark H; Düsterhöft A; Philippsen P; Yoo JS; Gallwitz D; Zerial M
    J Cell Biol; 1994 Apr; 125(2):283-98. PubMed ID: 8163546
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Na+/H+ exchanger Nhx1p regulates the initiation of Saccharomyces cerevisiae vacuole fusion.
    Qiu QS; Fratti RA
    J Cell Sci; 2010 Oct; 123(Pt 19):3266-75. PubMed ID: 20826459
    [TBL] [Abstract][Full Text] [Related]  

  • 30. V-ATPase-dependent luminal acidification is required for endocytic recycling of a yeast cell wall stress sensor, Wsc1p.
    Ueno K; Saito M; Nagashima M; Kojima A; Nishinoaki S; Toshima JY; Toshima J
    Biochem Biophys Res Commun; 2014 Jan; 443(2):549-55. PubMed ID: 24326069
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cell-free reconstitution of microautophagic vacuole invagination and vesicle formation.
    Sattler T; Mayer A
    J Cell Biol; 2000 Oct; 151(3):529-38. PubMed ID: 11062255
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genomic screen for vacuolar protein sorting genes in Saccharomyces cerevisiae.
    Bonangelino CJ; Chavez EM; Bonifacino JS
    Mol Biol Cell; 2002 Jul; 13(7):2486-501. PubMed ID: 12134085
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Proton gradient-driven nickel uptake by vacuolar membrane vesicles of Saccharomyces cerevisiae.
    Nishimura K; Igarashi K; Kakinuma Y
    J Bacteriol; 1998 Apr; 180(7):1962-4. PubMed ID: 9537401
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Vacuole biogenesis in Saccharomyces cerevisiae: protein transport pathways to the yeast vacuole.
    Bryant NJ; Stevens TH
    Microbiol Mol Biol Rev; 1998 Mar; 62(1):230-47. PubMed ID: 9529893
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A short domain of the plant vacuolar protein phytohemagglutinin targets invertase to the yeast vacuole.
    Tague BW; Dickinson CD; Chrispeels MJ
    Plant Cell; 1990 Jun; 2(6):533-46. PubMed ID: 2152175
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Novel protein kinase/phosphatidylinositol 3-kinase complex essential for receptor-mediated protein sorting to the vacuole in yeast.
    Stack JH; Herman PK; DeWald DB; Marcusson EG; Lin Cereghino J; Horazdovsky BF; Emr SD
    Cold Spring Harb Symp Quant Biol; 1995; 60():157-70. PubMed ID: 8824388
    [No Abstract]   [Full Text] [Related]  

  • 37. The dual mechanism of the antifungal effect of new lysosomotropic agents on the Saccharomyces cerevisiae RXII strain.
    Krasowska A; Chmielewska L; Łuczyński J; Witek S; Sigler K
    Cell Mol Biol Lett; 2003; 8(1):111-20. PubMed ID: 12655364
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The yeast model for batten disease: mutations in BTN1, BTN2, and HSP30 alter pH homeostasis.
    Chattopadhyay S; Muzaffar NE; Sherman F; Pearce DA
    J Bacteriol; 2000 Nov; 182(22):6418-23. PubMed ID: 11053386
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Iron sequestration by the yeast vacuole. A study with vacuolar mutants of Saccharomyces cerevisiae.
    Bode HP; Dumschat M; Garotti S; Fuhrmann GF
    Eur J Biochem; 1995 Mar; 228(2):337-42. PubMed ID: 7705347
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Yeast vacuolar proenzymes are sorted in the late Golgi complex and transported to the vacuole via a prevacuolar endosome-like compartment.
    Vida TA; Huyer G; Emr SD
    J Cell Biol; 1993 Jun; 121(6):1245-56. PubMed ID: 8509446
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.