BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 2529676)

  • 41. Organelle acidification negatively regulates vacuole membrane fusion in vivo.
    Desfougères Y; Vavassori S; Rompf M; Gerasimaite R; Mayer A
    Sci Rep; 2016 Jul; 6():29045. PubMed ID: 27363625
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Functional properties of a hybrid vacuolar H(+)-ATPase in Saccharomyces cells expressing the Nephrops 16-kDa proteolipid.
    Harrison MA; Jones PC; Kim YI; Finbow ME; Findlay JB
    Eur J Biochem; 1994 Apr; 221(1):111-20. PubMed ID: 8168500
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cytoplasm-to-vacuole targeting and autophagy employ the same machinery to deliver proteins to the yeast vacuole.
    Scott SV; Hefner-Gravink A; Morano KA; Noda T; Ohsumi Y; Klionsky DJ
    Proc Natl Acad Sci U S A; 1996 Oct; 93(22):12304-8. PubMed ID: 8901576
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification of genes affecting vacuole membrane fragmentation in Saccharomyces cerevisiae.
    Michaillat L; Mayer A
    PLoS One; 2013; 8(2):e54160. PubMed ID: 23383298
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Genomic analysis of homotypic vacuole fusion.
    Seeley ES; Kato M; Margolis N; Wickner W; Eitzen G
    Mol Biol Cell; 2002 Mar; 13(3):782-94. PubMed ID: 11907261
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Transport of proteins to the yeast vacuole: autophagy, cytoplasm-to-vacuole targeting, and role of the vacuole in degradation.
    Teter SA; Klionsky DJ
    Semin Cell Dev Biol; 2000 Jun; 11(3):173-9. PubMed ID: 10906274
    [TBL] [Abstract][Full Text] [Related]  

  • 47. VPS21 controls entry of endocytosed and biosynthetic proteins into the yeast prevacuolar compartment.
    Gerrard SR; Bryant NJ; Stevens TH
    Mol Biol Cell; 2000 Feb; 11(2):613-26. PubMed ID: 10679018
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The cytoplasmic tail domain of the vacuolar protein sorting receptor Vps10p and a subset of VPS gene products regulate receptor stability, function, and localization.
    Cereghino JL; Marcusson EG; Emr SD
    Mol Biol Cell; 1995 Sep; 6(9):1089-102. PubMed ID: 8534908
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Chloride transport of yeast vacuolar membrane vesicles: a study of in vitro vacuolar acidification.
    Wada Y; Ohsumi Y; Anraku Y
    Biochim Biophys Acta; 1992 Aug; 1101(3):296-302. PubMed ID: 1386528
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rapid Nuclear Exclusion of Hcm1 in Aging
    Ghavidel A; Baxi K; Prusinkiewicz M; Swan C; Belak ZR; Eskiw CH; Carvalho CE; Harkness TA
    G3 (Bethesda); 2018 May; 8(5):1579-1592. PubMed ID: 29519938
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The VPS1 protein, a homolog of dynamin required for vacuolar protein sorting in Saccharomyces cerevisiae, is a GTPase with two functionally separable domains.
    Vater CA; Raymond CK; Ekena K; Howald-Stevenson I; Stevens TH
    J Cell Biol; 1992 Nov; 119(4):773-86. PubMed ID: 1429836
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Vibrio effector protein VopQ inhibits fusion of V-ATPase-containing membranes.
    Sreelatha A; Bennett TL; Carpinone EM; O'Brien KM; Jordan KD; Burdette DL; Orth K; Starai VJ
    Proc Natl Acad Sci U S A; 2015 Jan; 112(1):100-5. PubMed ID: 25453092
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Protein sorting in yeast: mutants defective in vacuole biogenesis mislocalize vacuolar proteins into the late secretory pathway.
    Rothman JH; Stevens TH
    Cell; 1986 Dec; 47(6):1041-51. PubMed ID: 3536126
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Acidification of vacuoles is required for autophagic degradation in the yeast, Saccharomyces cerevisiae.
    Nakamura N; Matsuura A; Wada Y; Ohsumi Y
    J Biochem; 1997 Feb; 121(2):338-44. PubMed ID: 9089409
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Membrane protein sorting in the yeast secretory pathway: evidence that the vacuole may be the default compartment.
    Roberts CJ; Nothwehr SF; Stevens TH
    J Cell Biol; 1992 Oct; 119(1):69-83. PubMed ID: 1527174
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Proton Transport and pH Control in Fungi.
    Kane PM
    Adv Exp Med Biol; 2016; 892():33-68. PubMed ID: 26721270
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Traffic into the prevacuolar/endosomal compartment of Saccharomyces cerevisiae: a VPS45-dependent intracellular route and a VPS45-independent, endocytic route.
    Bryant NJ; Piper RC; Gerrard SR; Stevens TH
    Eur J Cell Biol; 1998 May; 76(1):43-52. PubMed ID: 9650782
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Assay of vacuolar pH in yeast and identification of acidification-defective mutants.
    Preston RA; Murphy RF; Jones EW
    Proc Natl Acad Sci U S A; 1989 Sep; 86(18):7027-31. PubMed ID: 2674942
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Multilamellar endosome-like compartment accumulates in the yeast vps28 vacuolar protein sorting mutant.
    Rieder SE; Banta LM; Köhrer K; McCaffery JM; Emr SD
    Mol Biol Cell; 1996 Jun; 7(6):985-99. PubMed ID: 8817003
    [TBL] [Abstract][Full Text] [Related]  

  • 60. STT10, a novel class-D VPS yeast gene required for osmotic integrity related to the PKC1/STT1 protein kinase pathway.
    Yoshida S; Ohya Y; Hirose R; Nakano A; Anraku Y
    Gene; 1995 Jul; 160(1):117-22. PubMed ID: 7628704
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.