BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 2529676)

  • 81. Found art: the yeast vacuole.
    Hartley S; Klionsky DJ
    Autophagy; 2019 Sep; 15(9):1638-1644. PubMed ID: 31305202
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Shared and more specific genetic determinants and pathways underlying yeast tolerance to acetic, butyric, and octanoic acids.
    Mota MN; Matos M; Bahri N; Sá-Correia I
    Microb Cell Fact; 2024 Feb; 23(1):71. PubMed ID: 38419072
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Visualizing Secretory Cargo Transport in Budding Yeast.
    Casler JC; Glick BS
    Curr Protoc Cell Biol; 2019 Jun; 83(1):e80. PubMed ID: 30414385
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Organelle acidification negatively regulates vacuole membrane fusion in vivo.
    Desfougères Y; Vavassori S; Rompf M; Gerasimaite R; Mayer A
    Sci Rep; 2016 Jul; 6():29045. PubMed ID: 27363625
    [TBL] [Abstract][Full Text] [Related]  

  • 85. On the endosomal function and gene nomenclature of human SPE-39.
    L'Hernault SW; Faundez V
    Nat Genet; 2011 Mar; 43(3):176. PubMed ID: 21350494
    [No Abstract]   [Full Text] [Related]  

  • 86. Phylogeny of the SNARE vesicle fusion machinery yields insights into the conservation of the secretory pathway in fungi.
    Kienle N; Kloepper TH; Fasshauer D
    BMC Evol Biol; 2009 Jan; 9():19. PubMed ID: 19166604
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Regulators of cellular levels of histone acetylation in Saccharomyces cerevisiae.
    Peng W; Togawa C; Zhang K; Kurdistani SK
    Genetics; 2008 May; 179(1):277-89. PubMed ID: 18493053
    [TBL] [Abstract][Full Text] [Related]  

  • 88. end5, end6, and end7: mutations that cause actin delocalization and block the internalization step of endocytosis in Saccharomyces cerevisiae.
    Munn AL; Stevenson BJ; Geli MI; Riezman H
    Mol Biol Cell; 1995 Dec; 6(12):1721-42. PubMed ID: 8590801
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Protein targeting to the vacuole in plant cells.
    Nakamura K; Matsuoka K
    Plant Physiol; 1993 Jan; 101(1):1-5. PubMed ID: 8278490
    [No Abstract]   [Full Text] [Related]  

  • 90. An analysis of the sequence of part of the right arm of chromosome II of S. cerevisiae reveals new genes encoding an amino-acid permease and a carboxypeptidase.
    Nasr F; Bécam AM; Grzybowska E; Zagulski M; Slonimski PP; Herbert CJ
    Curr Genet; 1994 Jul; 26(1):1-7. PubMed ID: 7954890
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Endocytosis is required for the growth of vacuolar H(+)-ATPase-defective yeast: identification of six new END genes.
    Munn AL; Riezman H
    J Cell Biol; 1994 Oct; 127(2):373-86. PubMed ID: 7929582
    [TBL] [Abstract][Full Text] [Related]  

  • 92. DNM1, a dynamin-related gene, participates in endosomal trafficking in yeast.
    Gammie AE; Kurihara LJ; Vallee RB; Rose MD
    J Cell Biol; 1995 Aug; 130(3):553-66. PubMed ID: 7622557
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Different sensitivity to wortmannin of two vacuolar sorting signals indicates the presence of distinct sorting machineries in tobacco cells.
    Matsuoka K; Bassham DC; Raikhel NV; Nakamura K
    J Cell Biol; 1995 Sep; 130(6):1307-18. PubMed ID: 7559754
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Assay of vacuolar pH in yeast and identification of acidification-defective mutants.
    Preston RA; Murphy RF; Jones EW
    Proc Natl Acad Sci U S A; 1989 Sep; 86(18):7027-31. PubMed ID: 2674942
    [TBL] [Abstract][Full Text] [Related]  

  • 95. The fungal vacuole: composition, function, and biogenesis.
    Klionsky DJ; Herman PK; Emr SD
    Microbiol Rev; 1990 Sep; 54(3):266-92. PubMed ID: 2215422
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Molecular analysis of the yeast VPS3 gene and the role of its product in vacuolar protein sorting and vacuolar segregation during the cell cycle.
    Raymond CK; O'Hara PJ; Eichinger G; Rothman JH; Stevens TH
    J Cell Biol; 1990 Sep; 111(3):877-92. PubMed ID: 2202738
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Yeast carboxypeptidase Y vacuolar targeting signal is defined by four propeptide amino acids.
    Valls LA; Winther JR; Stevens TH
    J Cell Biol; 1990 Aug; 111(2):361-8. PubMed ID: 2199455
    [TBL] [Abstract][Full Text] [Related]  

  • 98. A short domain of the plant vacuolar protein phytohemagglutinin targets invertase to the yeast vacuole.
    Tague BW; Dickinson CD; Chrispeels MJ
    Plant Cell; 1990 Jun; 2(6):533-46. PubMed ID: 2152175
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Role of vacuolar acidification in protein sorting and zymogen activation: a genetic analysis of the yeast vacuolar proton-translocating ATPase.
    Yamashiro CT; Kane PM; Wolczyk DF; Preston RA; Stevens TH
    Mol Cell Biol; 1990 Jul; 10(7):3737-49. PubMed ID: 2141385
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Disruption of genes encoding subunits of yeast vacuolar H(+)-ATPase causes conditional lethality.
    Nelson H; Nelson N
    Proc Natl Acad Sci U S A; 1990 May; 87(9):3503-7. PubMed ID: 2139726
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.