These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 25296778)

  • 1. Transport properties of carbon dioxide and methane from molecular dynamics simulations.
    Aimoli CG; Maginn EJ; Abreu CR
    J Chem Phys; 2014 Oct; 141(13):134101. PubMed ID: 25296778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics simulation of the effect of bond flexibility on the transport properties of water.
    Raabe G; Sadus RJ
    J Chem Phys; 2012 Sep; 137(10):104512. PubMed ID: 22979879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal conductivity of carbon dioxide from non-equilibrium molecular dynamics: a systematic study of several common force fields.
    Trinh TT; Vlugt TJ; Kjelstrup S
    J Chem Phys; 2014 Oct; 141(13):134504. PubMed ID: 25296818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Revised Enskog theory for Mie fluids: Prediction of diffusion coefficients, thermal diffusion coefficients, viscosities, and thermal conductivities.
    Jervell VG; Wilhelmsen Ø
    J Chem Phys; 2023 Jun; 158(22):. PubMed ID: 37290070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved classical united-atom force field for imidazolium-based ionic liquids: tetrafluoroborate, hexafluorophosphate, methylsulfate, trifluoromethylsulfonate, acetate, trifluoroacetate, and bis(trifluoromethylsulfonyl)amide.
    Zhong X; Liu Z; Cao D
    J Phys Chem B; 2011 Aug; 115(33):10027-40. PubMed ID: 21751818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal conductivity of methane hydrate from experiment and molecular simulation.
    Rosenbaum EJ; English NJ; Johnson JK; Shaw DW; Warzinski RP
    J Phys Chem B; 2007 Nov; 111(46):13194-205. PubMed ID: 17967008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic and transport properties of carbon dioxide from molecular simulation.
    Nieto-Draghi C; de Bruin T; Pérez-Pellitero J; Bonet Avalos J; Mackie AD
    J Chem Phys; 2007 Feb; 126(6):064509. PubMed ID: 17313231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomistic Molecular Dynamics Simulations of Carbon Dioxide Diffusivity in n-Hexane, n-Decane, n-Hexadecane, Cyclohexane, and Squalane.
    Moultos OA; Tsimpanogiannis IN; Panagiotopoulos AZ; Trusler JP; Economou IG
    J Phys Chem B; 2016 Dec; 120(50):12890-12900. PubMed ID: 27936740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compressibility, thermal expansion coefficient and heat capacity of CH4 and CO2 hydrate mixtures using molecular dynamics simulations.
    Ning FL; Glavatskiy K; Ji Z; Kjelstrup S; H Vlugt TJ
    Phys Chem Chem Phys; 2015 Jan; 17(4):2869-83. PubMed ID: 25501882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport properties of CO2-expanded acetonitrile from molecular dynamics simulations.
    Houndonougbo Y; Laird BB; Kuczera K
    J Chem Phys; 2007 Feb; 126(7):074507. PubMed ID: 17328620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular Dynamics Study on Structure, Vibrational Properties, and Transport Coefficients of Liquid Alumina.
    Zhou X; Zhou Y; Deng Y; Zhang Y
    Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36499865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics simulation of imidazolium-based ionic liquids. II. Transport coefficients.
    Kowsari MH; Alavi S; Ashrafizaadeh M; Najafi B
    J Chem Phys; 2009 Jan; 130(1):014703. PubMed ID: 19140627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular simulation of gas adsorption and diffusion in a breathing MOF using a rigid force field.
    García-Pérez E; Serra-Crespo P; Hamad S; Kapteijn F; Gascon J
    Phys Chem Chem Phys; 2014 Aug; 16(30):16060-6. PubMed ID: 24964841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calculation of the transport properties of carbon dioxide. II. Thermal conductivity and thermomagnetic effects.
    Bock S; Bich E; Vogel E; Dickinson AS; Vesovic V
    J Chem Phys; 2004 May; 120(17):7987-97. PubMed ID: 15267716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Modeling of Thermodynamic and Transport Properties for CO
    Jiang H; Economou IG; Panagiotopoulos AZ
    Acc Chem Res; 2017 Apr; 50(4):751-758. PubMed ID: 28234455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A molecular dynamics investigation of the structural and dynamic properties of the ionic liquid 1-n-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide.
    Liu H; Maginn E
    J Chem Phys; 2011 Sep; 135(12):124507. PubMed ID: 21974535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermophysical properties of supercritical water and bond flexibility.
    Shvab I; Sadus RJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012124. PubMed ID: 26274141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Equations of state and transport properties of warm dense beryllium: a quantum molecular dynamics study.
    Wang C; Long Y; Tian MF; He XT; Zhang P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):043105. PubMed ID: 23679528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel algorithm to model the influence of host lattice flexibility in molecular dynamics simulations: loading dependence of self-diffusion in carbon nanotubes.
    Jakobtorweihen S; Lowe CP; Keil FJ; Smit B
    J Chem Phys; 2006 Apr; 124(15):154706. PubMed ID: 16674250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport diffusion of gases is rapid in flexible carbon nanotubes.
    Chen H; Johnson JK; Sholl DS
    J Phys Chem B; 2006 Feb; 110(5):1971-5. PubMed ID: 16471771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.