These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 25296828)

  • 1. Fe adsorption on hematite (α-Fe2O3) (0001) and magnetite (Fe3O4) (111) surfaces.
    Pabisiak T; Kiejna A
    J Chem Phys; 2014 Oct; 141(13):134707. PubMed ID: 25296828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface properties of clean and Au or Pd covered hematite (α-Fe(2)O(3)) (0001).
    Kiejna A; Pabisiak T
    J Phys Condens Matter; 2012 Mar; 24(9):095003. PubMed ID: 22274998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CO adsorption on small Aun (n = 1-4) structures supported on hematite. II. Adsorption on the O-rich termination of α-Fe2O3(0001) surface.
    Pabisiak T; Winiarski MJ; Kiejna A
    J Chem Phys; 2016 Jan; 144(4):044705. PubMed ID: 26827226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gold nanostructures on iron oxide surfaces and their interaction with CO.
    Kiejna A; Ossowski T; Pabisiak T
    J Phys Condens Matter; 2020 Jul; 32(43):. PubMed ID: 32531774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water adsorption and dissociation on α-Fe2O3(0001): PBE+U calculations.
    Nguyen MT; Seriani N; Gebauer R
    J Chem Phys; 2013 May; 138(19):194709. PubMed ID: 23697432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CO adsorption on small Aun (n = 1-4) structures supported on hematite. I. Adsorption on iron terminated α-Fe2O3 (0001) surface.
    Pabisiak T; Winiarski MJ; Kiejna A
    J Chem Phys; 2016 Jan; 144(4):044704. PubMed ID: 26827225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption of gold subnano-structures on a magnetite(111) surface and their interaction with CO.
    Pabisiak T; Winiarski MJ; Ossowski T; Kiejna A
    Phys Chem Chem Phys; 2016 Jul; 18(27):18169-79. PubMed ID: 27332962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Half-metallicity induced by boron adsorption on an Fe3O4(100) surface.
    Sun X; Pratt A; Yamauchi Y
    Phys Chem Chem Phys; 2015 Jun; 17(23):15386-91. PubMed ID: 26008904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A DFT study of the structures, stabilities and redox behaviour of the major surfaces of magnetite Fe₃O₄.
    Santos-Carballal D; Roldan A; Grau-Crespo R; de Leeuw NH
    Phys Chem Chem Phys; 2014 Oct; 16(39):21082-97. PubMed ID: 24874778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Defective α-Fe2O3(0001): an ab initio study.
    Nguyen MT; Seriani N; Gebauer R
    Chemphyschem; 2014 Oct; 15(14):2930-5. PubMed ID: 25045043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and energetics changes during hydrogenation of 4H-SiC{0001} surfaces: a DFT study.
    Wachowicz E; Kiejna A
    J Phys Condens Matter; 2012 Sep; 24(38):385801. PubMed ID: 22945033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption of sulfur dioxide on hematite and goethite particle surfaces.
    Baltrusaitis J; Cwiertny DM; Grassian VH
    Phys Chem Chem Phys; 2007 Nov; 9(41):5542-54. PubMed ID: 17957310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CO adsorption, oxidation and carbonate formation mechanisms on Fe
    Yu X; Zhang X; Jin L; Feng G
    Phys Chem Chem Phys; 2017 Jul; 19(26):17287-17299. PubMed ID: 28642956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structures and energies of Cu clusters on Fe and Fe3C surfaces from density functional theory computation.
    Tian X; Wang T; Yang Y; Li YW; Wang J; Jiao H
    Phys Chem Chem Phys; 2014 Dec; 16(48):26997-7011. PubMed ID: 25379628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scanning tunneling microscopy and theoretical study of water adsorption on Fe3O4: implications for catalysis.
    Rim KT; Eom D; Chan SW; Flytzani-Stephanopoulos M; Flynn GW; Wen XD; Batista ER
    J Am Chem Soc; 2012 Nov; 134(46):18979-85. PubMed ID: 23092372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative DFT study of inner-sphere As(III) complexes on hydrated α-Fe2O3(0001) surface models.
    Goffinet CJ; Mason SE
    J Environ Monit; 2012 Jul; 14(7):1860-71. PubMed ID: 22718082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photo-driven oxidation of water on α-Fe2O3 surfaces: an ab initio study.
    Nguyen MT; Seriani N; Piccinin S; Gebauer R
    J Chem Phys; 2014 Feb; 140(6):064703. PubMed ID: 24527933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water adsorption and O-defect formation on Fe
    Ovcharenko R; Voloshina E; Sauer J
    Phys Chem Chem Phys; 2016 Sep; 18(36):25560-25568. PubMed ID: 27722324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics and mechanisms for reactions of Fe(II) with iron(III) oxides.
    Jeon BH; Dempsey BA; Burgos WD
    Environ Sci Technol; 2003 Aug; 37(15):3309-15. PubMed ID: 12966975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The nature of the Pt(111)/α-Fe
    Mahmoud A; Deleuze PM; Dupont C
    J Chem Phys; 2018 May; 148(20):204701. PubMed ID: 29865805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.