These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 25296830)

  • 1. The mold integration method for the calculation of the crystal-fluid interfacial free energy from simulations.
    Espinosa JR; Vega C; Sanz E
    J Chem Phys; 2014 Oct; 141(13):134709. PubMed ID: 25296830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lattice mold technique for the calculation of crystal nucleation rates.
    Espinosa JR; Sampedro P; Valeriani C; Vega C; Sanz E
    Faraday Discuss; 2016 Dec; 195():569-582. PubMed ID: 27727352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct calculation of the hard-sphere crystal /Melt interfacial free energy.
    Davidchack RL; Laird BB
    Phys Rev Lett; 2000 Nov; 85(22):4751-4. PubMed ID: 11082643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lennard-Jones systems near solid walls: computing interfacial free energies from molecular simulation methods.
    Benjamin R; Horbach J
    J Chem Phys; 2013 Aug; 139(8):084705. PubMed ID: 24007027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct calculation of the crystal-melt interfacial free energy via molecular dynamics computer simulation.
    Laird BB; Davidchack RL
    J Phys Chem B; 2005 Sep; 109(38):17802-12. PubMed ID: 16853283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anisotropic interfacial free energies of the hard-sphere crystal-melt interfaces.
    Mu Y; Houk A; Song X
    J Phys Chem B; 2005 Apr; 109(14):6500-4. PubMed ID: 16851729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computer simulation studies of finite-size broadening of solid-liquid interfaces: from hard spheres to nickel.
    Zykova-Timan T; Rozas RE; Horbach J; Binder K
    J Phys Condens Matter; 2009 Nov; 21(46):464102. PubMed ID: 21715866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interfacial free energy of the NaCl crystal-melt interface from capillary wave fluctuations.
    Benet J; MacDowell LG; Sanz E
    J Chem Phys; 2015 Apr; 142(13):134706. PubMed ID: 25854257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wall-liquid and wall-crystal interfacial free energies via thermodynamic integration: a molecular dynamics simulation study.
    Benjamin R; Horbach J
    J Chem Phys; 2012 Jul; 137(4):044707. PubMed ID: 22852644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-referential Monte Carlo method for calculating the free energy of crystalline solids.
    Sweatman MB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 2):016711. PubMed ID: 16090138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interfacial free energy of hard-sphere fluids and solids near a hard wall.
    Heni M; Löwen H
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Dec; 60(6 Pt B):7057-65. PubMed ID: 11970645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The crystal-fluid interfacial free energy and nucleation rate of NaCl from different simulation methods.
    Espinosa JR; Vega C; Valeriani C; Sanz E
    J Chem Phys; 2015 May; 142(19):194709. PubMed ID: 26001475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Seeding approach to crystal nucleation.
    Espinosa JR; Vega C; Valeriani C; Sanz E
    J Chem Phys; 2016 Jan; 144(3):034501. PubMed ID: 26801035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On fluid-solid direct coexistence simulations: the pseudo-hard sphere model.
    Espinosa JR; Sanz E; Valeriani C; Vega C
    J Chem Phys; 2013 Oct; 139(14):144502. PubMed ID: 24116630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal-liquid interfacial free energy of hard spheres via a thermodynamic integration scheme.
    Benjamin R; Horbach J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032410. PubMed ID: 25871126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Test-area simulation method for the direct determination of the interfacial tension of systems with continuous or discontinuous potentials.
    Gloor GJ; Jackson G; Blas FJ; de Miguel E
    J Chem Phys; 2005 Oct; 123(13):134703. PubMed ID: 16223322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal-liquid interfacial free energy via thermodynamic integration.
    Benjamin R; Horbach J
    J Chem Phys; 2014 Jul; 141(4):044715. PubMed ID: 25084945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Free energy barriers for homogeneous crystal nucleation in a eutectic system of binary hard spheres.
    Ganagalla SR; Punnathanam SN
    J Chem Phys; 2013 May; 138(17):174503. PubMed ID: 23656140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing crystal-melt interfacial free energies through homogeneous nucleation rates.
    Bai XM; Li M
    J Phys Condens Matter; 2008 Sep; 20(37):375103. PubMed ID: 21694437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calculation of liquid water-hydrate-methane vapor phase equilibria from molecular simulations.
    Jensen L; Thomsen K; von Solms N; Wierzchowski S; Walsh MR; Koh CA; Sloan ED; Wu DT; Sum AK
    J Phys Chem B; 2010 May; 114(17):5775-82. PubMed ID: 20392117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.