BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 25296911)

  • 21. Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction.
    Almeida JR; Bertilsson M; Hahn-Hägerdal B; Lidén G; Gorwa-Grauslund MF
    Appl Microbiol Biotechnol; 2009 Sep; 84(4):751-61. PubMed ID: 19506862
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae.
    Gorsich SW; Dien BS; Nichols NN; Slininger PJ; Liu ZL; Skory CD
    Appl Microbiol Biotechnol; 2006 Jul; 71(3):339-49. PubMed ID: 16222531
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran.
    Liu ZL; Slininger PJ; Dien BS; Berhow MA; Kurtzman CP; Gorsich SW
    J Ind Microbiol Biotechnol; 2004 Sep; 31(8):345-52. PubMed ID: 15338422
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genome-wide screening of Saccharomyces cerevisiae genes required to foster tolerance towards industrial wheat straw hydrolysates.
    Pereira FB; Teixeira MC; Mira NP; Sá-Correia I; Domingues L
    J Ind Microbiol Biotechnol; 2014 Dec; 41(12):1753-61. PubMed ID: 25287021
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The VFH1 (YLL056C) promoter is vanillin-inducible and enables mRNA translation despite pronounced translation repression caused by severe vanillin stress in Saccharomyces cerevisiae.
    Nguyen TTM; Ishida Y; Kato S; Iwaki A; Izawa S
    Yeast; 2018 Jul; 35(7):465-475. PubMed ID: 29575020
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evolutionary engineering and transcriptomic analysis of nickel-resistant Saccharomyces cerevisiae.
    Küçükgöze G; Alkım C; Yılmaz Ü; Kısakesen Hİ; Gündüz S; Akman S; Çakar ZP
    FEMS Yeast Res; 2013 Dec; 13(8):731-46. PubMed ID: 23992612
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chemical genomic guided engineering of gamma-valerolactone tolerant yeast.
    Bottoms S; Dickinson Q; McGee M; Hinchman L; Higbee A; Hebert A; Serate J; Xie D; Zhang Y; Coon JJ; Myers CL; Landick R; Piotrowski JS
    Microb Cell Fact; 2018 Jan; 17(1):5. PubMed ID: 29329531
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Signature pathway expression of xylose utilization in the genetically engineered industrial yeast Saccharomyces cerevisiae.
    Feng Q; Liu ZL; Weber SA; Li S
    PLoS One; 2018; 13(4):e0195633. PubMed ID: 29621349
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Furfural and 5-hydroxymethyl-furfural degradation using recombinant manganese peroxidase.
    Yee KL; Jansen LE; Lajoie CA; Penner MH; Morse L; Kelly CJ
    Enzyme Microb Technol; 2018 Jan; 108():59-65. PubMed ID: 29108628
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural.
    Hasunuma T; Ismail KSK; Nambu Y; Kondo A
    J Biosci Bioeng; 2014 Feb; 117(2):165-169. PubMed ID: 23916856
    [TBL] [Abstract][Full Text] [Related]  

  • 31. NADH- vs NADPH-coupled reduction of 5-hydroxymethyl furfural (HMF) and its implications on product distribution in Saccharomyces cerevisiae.
    Almeida JR; Röder A; Modig T; Laadan B; Lidén G; Gorwa-Grauslund MF
    Appl Microbiol Biotechnol; 2008 Apr; 78(6):939-45. PubMed ID: 18330568
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Profiling of Saccharomyces cerevisiae transcription factors for engineering the resistance of yeast to lignocellulose-derived inhibitors in biomass conversion.
    Wu G; Xu Z; Jönsson LJ
    Microb Cell Fact; 2017 Nov; 16(1):199. PubMed ID: 29137634
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The 'yeast cell wall chip' - a tool to analyse the regulation of cell wall biogenesis in Saccharomyces cerevisiae.
    Rodríguez-Peña JM; Pérez-Díaz RM; Alvarez S; Bermejo C; García R; Santiago C; Nombela C; Arroyo J
    Microbiology (Reading); 2005 Jul; 151(Pt 7):2241-2249. PubMed ID: 16000714
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains.
    Liu ZL; Slininger PJ; Gorsich SW
    Appl Biochem Biotechnol; 2005; 121-124():451-60. PubMed ID: 15917621
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genome-wide screening of aluminum tolerance in Saccharomyces cerevisiae.
    Kakimoto M; Kobayashi A; Fukuda R; Ono Y; Ohta A; Yoshimura E
    Biometals; 2005 Oct; 18(5):467-74. PubMed ID: 16333747
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transcriptome of Saccharomyces cerevisiae during production of D-xylonate.
    Mojzita D; Oja M; Rintala E; Wiebe M; Penttilä M; Ruohonen L
    BMC Genomics; 2014 Sep; 15(1):763. PubMed ID: 25192596
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evolutionary engineering of Saccharomyces cerevisiae for enhanced tolerance to hydrolysates of lignocellulosic biomass.
    Almario MP; Reyes LH; Kao KC
    Biotechnol Bioeng; 2013 Oct; 110(10):2616-23. PubMed ID: 23613173
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genetic mapping of a bioethanol yeast strain reveals new targets for hydroxymethylfurfural- and thermotolerance.
    de Mello FDSB; Coradini ALV; Carazzolle MF; Maneira C; Furlan M; Pereira GAG; Teixeira GS
    Microbiol Res; 2022 Oct; 263():127138. PubMed ID: 35931002
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative genomics of Saccharomyces cerevisiae natural isolates for bioenergy production.
    Wohlbach DJ; Rovinskiy N; Lewis JA; Sardi M; Schackwitz WS; Martin JA; Deshpande S; Daum CG; Lipzen A; Sato TK; Gasch AP
    Genome Biol Evol; 2014 Sep; 6(9):2557-66. PubMed ID: 25364804
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Industrial robust yeast isolates with great potential for fermentation of lignocellulosic biomass.
    Pereira FB; Romaní A; Ruiz HA; Teixeira JA; Domingues L
    Bioresour Technol; 2014 Jun; 161():192-9. PubMed ID: 24704884
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.