These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
65 related articles for article (PubMed ID: 25297540)
21. Phytochrome A and its Functional Manifestations in Etiolated and Far-red Light-grown Seedlings of the Wild-type Rice and its Hebiba and Cpm2 Mutants Deficient in the Defense-related Phytohormone Jasmonic Acid. Sineshchekov V; Koppel L; Riemann M; Nick P Photochem Photobiol; 2021 Mar; 97(2):335-342. PubMed ID: 33090519 [TBL] [Abstract][Full Text] [Related]
22. Functional characterization of phytochrome autophosphorylation in plant light signaling. Han YJ; Kim HS; Kim YM; Shin AY; Lee SS; Bhoo SH; Song PS; Kim JI Plant Cell Physiol; 2010 Apr; 51(4):596-609. PubMed ID: 20203237 [TBL] [Abstract][Full Text] [Related]
23. Fluorescence spectroscopy and photochemistry of phytochromes A and B in wild-type, mutant and transgenic strains of Arabidopsis thaliana. Sineshchekov VA; Ogorodnikova OB; Devlin PF; Whitelam GC J Photochem Photobiol B; 1998 Feb; 42(2):133-42. PubMed ID: 9540220 [TBL] [Abstract][Full Text] [Related]
24. A rice phytochrome A in Arabidopsis: The Role of the N-terminus under red and far-red light. Kneissl J; Shinomura T; Furuya M; Bolle C Mol Plant; 2008 Jan; 1(1):84-102. PubMed ID: 20031917 [TBL] [Abstract][Full Text] [Related]
25. Luciferase and green fluorescent protein reporter genes as tools to determine protein abundance and intracellular dynamics. Viczián A; Kircher S Methods Mol Biol; 2010; 655():293-312. PubMed ID: 20734269 [TBL] [Abstract][Full Text] [Related]
26. Phytochrome A is an irradiance-dependent red light sensor. Franklin KA; Allen T; Whitelam GC Plant J; 2007 Apr; 50(1):108-17. PubMed ID: 17346261 [TBL] [Abstract][Full Text] [Related]
27. Transgene-induced silencing of Arabidopsis phytochrome A gene via exonic methylation. Chawla R; Nicholson SJ; Folta KM; Srivastava V Plant J; 2007 Dec; 52(6):1105-18. PubMed ID: 17931351 [TBL] [Abstract][Full Text] [Related]
28. Applications of fluorescence spectroscopy in the investigation of plant phytochrome invivo. Sineshchekov VA Plant Physiol Biochem; 2024 Mar; 208():108434. PubMed ID: 38412703 [TBL] [Abstract][Full Text] [Related]
29. Nuclear accumulation of the phytochrome A photoreceptor requires FHY1. Hiltbrunner A; Viczián A; Bury E; Tscheuschler A; Kircher S; Tóth R; Honsberger A; Nagy F; Fankhauser C; Schäfer E Curr Biol; 2005 Dec; 15(23):2125-30. PubMed ID: 16332538 [TBL] [Abstract][Full Text] [Related]
30. Two molecular species of phytochrome A with distinct modes of action. Sineshchekov V Funct Plant Biol; 2019 Jan; 46(2):118-135. PubMed ID: 32172754 [TBL] [Abstract][Full Text] [Related]
31. Site-specific methylation in gene coding region underlies transcriptional silencing of the Phytochrome A epiallele in Arabidopsis thaliana. Rangani G; Khodakovskaya M; Alimohammadi M; Hoecker U; Srivastava V Plant Mol Biol; 2012 May; 79(1-2):191-202. PubMed ID: 22466452 [TBL] [Abstract][Full Text] [Related]
32. Dynamics of periarbuscular membranes visualized with a fluorescent phosphate transporter in arbuscular mycorrhizal roots of rice. Kobae Y; Hata S Plant Cell Physiol; 2010 Mar; 51(3):341-53. PubMed ID: 20097910 [TBL] [Abstract][Full Text] [Related]
33. Green fluorescent protein fusions to Arabidopsis fimbrin 1 for spatio-temporal imaging of F-actin dynamics in roots. Wang YS; Motes CM; Mohamalawari DR; Blancaflor EB Cell Motil Cytoskeleton; 2004 Oct; 59(2):79-93. PubMed ID: 15362112 [TBL] [Abstract][Full Text] [Related]
34. Roles for the N- and C-terminal domains of phytochrome B in interactions between phytochrome B and cryptochrome signaling cascades. Usami T; Matsushita T; Oka Y; Mochizuki N; Nagatani A Plant Cell Physiol; 2007 Mar; 48(3):424-33. PubMed ID: 17251203 [TBL] [Abstract][Full Text] [Related]
35. Integrated metabolite and gene expression profiling revealing phytochrome A regulation of polyamine biosynthesis of Arabidopsis thaliana. Jumtee K; Bamba T; Okazawa A; Fukusaki E; Kobayashi A J Exp Bot; 2008; 59(6):1187-200. PubMed ID: 18375607 [TBL] [Abstract][Full Text] [Related]
36. Heterotrimeric G-protein is involved in phytochrome A-mediated cell death of Arabidopsis hypocotyls. Wei Q; Zhou W; Hu G; Wei J; Yang H; Huang J Cell Res; 2008 Sep; 18(9):949-60. PubMed ID: 19160542 [TBL] [Abstract][Full Text] [Related]
37. phyA dominates in transduction of red-light signals to rapidly responding genes at the initiation of Arabidopsis seedling de-etiolation. Tepperman JM; Hwang YS; Quail PH Plant J; 2006 Dec; 48(5):728-42. PubMed ID: 17076805 [TBL] [Abstract][Full Text] [Related]
38. Subcellular localization of rice histone deacetylases in organelles. Chung PJ; Kim YS; Park SH; Nahm BH; Kim JK FEBS Lett; 2009 Jul; 583(13):2249-54. PubMed ID: 19505461 [TBL] [Abstract][Full Text] [Related]
39. Phytochrome interacting factors 4 and 5 redundantly limit seedling de-etiolation in continuous far-red light. Lorrain S; Trevisan M; Pradervand S; Fankhauser C Plant J; 2009 Nov; 60(3):449-61. PubMed ID: 19619162 [TBL] [Abstract][Full Text] [Related]
40. Dual targeting to mitochondria and plastids of AtBT1 and ZmBT1, two members of the mitochondrial carrier family. Bahaji A; Ovecka M; Bárány I; Risueño MC; Muñoz FJ; Baroja-Fernández E; Montero M; Li J; Hidalgo M; Sesma MT; Ezquer I; Testillano PS; Pozueta-Romero J Plant Cell Physiol; 2011 Apr; 52(4):597-609. PubMed ID: 21330298 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]