These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 25297639)

  • 1. Nickel nanoparticles effect on the electrochemical energy storage properties of carbon nanocomposite films.
    Bettini LG; Divitini G; Ducati C; Milani P; Piseri P
    Nanotechnology; 2014 Oct; 25(43):435401. PubMed ID: 25297639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interfacial properties of a carbyne-rich nanostructured carbon thin film in ionic liquid.
    Bettini LG; Della Foglia F; Piseri P; Milani P
    Nanotechnology; 2016 Mar; 27(11):115403. PubMed ID: 26878188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ STM studies of electrochemical growth of nanostructured Ni films and their anomalous IR properties.
    Wang HC; Sun SG; Yan JW; Yang HZ; Zhou ZY
    J Phys Chem B; 2005 Mar; 109(10):4309-16. PubMed ID: 16851496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Capacitive energy storage in nanostructured carbon-electrolyte systems.
    Simon P; Gogotsi Y
    Acc Chem Res; 2013 May; 46(5):1094-103. PubMed ID: 22670843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced supercapacitive performance of chemically grown cobalt-nickel hydroxides on three-dimensional graphene foam electrodes.
    Patil UM; Sohn JS; Kulkarni SB; Lee SC; Park HG; Gurav KV; Kim JH; Jun SC
    ACS Appl Mater Interfaces; 2014 Feb; 6(4):2450-8. PubMed ID: 24495203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Giant Negative Piezoresistive Effect in Diamond-like Carbon and Diamond-like Carbon-Based Nickel Nanocomposite Films Deposited by Reactive Magnetron Sputtering of Ni Target.
    Meškinis ŠN; Gudaitis R; Šlapikas K; Vasiliauskas A; Čiegis A; Tamulevičius T; Andrulevičius M; Tamulevičius S
    ACS Appl Mater Interfaces; 2018 May; 10(18):15778-15785. PubMed ID: 29658694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Amperometric Sensor for Thiocholine Based on Cluster-Assembled Zirconia Modified Electrodes.
    Raileanu A; Piazzoni C; Borghi F; Bettini LG; Shacham-Diamand Y; Santaniello T; Milani P
    J Nanosci Nanotechnol; 2018 Oct; 18(10):6905-6912. PubMed ID: 29954509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nickel hydroxide-carbon nanotube nanocomposites as supercapacitor electrodes: crystallinity dependent performances.
    Jiang W; Zhai S; Wei L; Yuan Y; Yu D; Wang L; Wei J; Chen Y
    Nanotechnology; 2015 Aug; 26(31):314003. PubMed ID: 26186042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene ultrathin film electrode for detection of lead ions in acetate buffer solution.
    Wang Z; Liu E
    Talanta; 2013 Jan; 103():47-55. PubMed ID: 23200357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication and Characterization of Thin Film Nickel Hydroxide Electrodes for Micropower Applications.
    Falahati H; Kim E; Barz DP
    ACS Appl Mater Interfaces; 2015 Jun; 7(23):12797-808. PubMed ID: 26000783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nickel Nanofoam/Different Phases of Ordered Mesoporous Carbon Composite Electrodes for Superior Capacitive Energy Storage.
    Lee K; Song H; Lee KH; Choi SH; Jang JH; Char K; Son JG
    ACS Appl Mater Interfaces; 2016 Aug; 8(34):22516-25. PubMed ID: 27490161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One material, multiple functions: graphene/Ni(OH)
    Neiva EG; Oliveira MM; Bergamini MF; Marcolino LH; Zarbin AJ
    Sci Rep; 2016 Sep; 6():33806. PubMed ID: 27654065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrothermally formed three-dimensional nanoporous Ni(OH)2 thin-film supercapacitors.
    Yang Y; Li L; Ruan G; Fei H; Xiang C; Fan X; Tour JM
    ACS Nano; 2014 Sep; 8(9):9622-8. PubMed ID: 25198148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Layer-by-layer assembled polyaniline nanofiber/multiwall carbon nanotube thin film electrodes for high-power and high-energy storage applications.
    Hyder MN; Lee SW; Cebeci FÇ; Schmidt DJ; Shao-Horn Y; Hammond PT
    ACS Nano; 2011 Nov; 5(11):8552-61. PubMed ID: 21981582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hierarchical Ni-Co layered double hydroxide nanosheets entrapped on conductive textile fibers: a cost-effective and flexible electrode for high-performance pseudocapacitors.
    Nagaraju G; Raju GS; Ko YH; Yu JS
    Nanoscale; 2016 Jan; 8(2):812-25. PubMed ID: 26450829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanostructured cobalt hydroxide thin films as high performance pseudocapacitor electrodes by graphene oxide wrapping.
    Bae S; Cha JH; Lee JH; Jung DY
    Dalton Trans; 2015 Sep; 44(36):16119-26. PubMed ID: 26289720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Layer-by-layer self-assembled multilayer films composed of graphene/polyaniline bilayers: high-energy electrode materials for supercapacitors.
    Sarker AK; Hong JD
    Langmuir; 2012 Aug; 28(34):12637-46. PubMed ID: 22866750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-step electrophoretic deposition of reduced graphene oxide and Ni(OH)2 composite films for controlled syntheses supercapacitor electrodes.
    Zhang H; Zhang X; Zhang D; Sun X; Lin H; Wang C; Ma Y
    J Phys Chem B; 2013 Feb; 117(6):1616-27. PubMed ID: 22994913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical deposition of subnanometer Ni films on TiN.
    Vanpaemel J; Sugiura M; Cuypers D; van der Veen MH; De Gendt S; Vereecken PM
    Langmuir; 2014 Mar; 30(8):2047-53. PubMed ID: 24520857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binary Nickel-Cobalt Oxides Electrode Materials for High-Performance Supercapacitors: Influence of its Composition and Porous Nature.
    Zhang J; Liu F; Cheng JP; Zhang XB
    ACS Appl Mater Interfaces; 2015 Aug; 7(32):17630-40. PubMed ID: 26204426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.