These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 25297683)

  • 1. Orientation- and passivation-dependent stability and electronic properties of α-Si3N4 nanobelts.
    Xiong L; Dai J; Zhong B; Wen G; Song Y
    Phys Chem Chem Phys; 2014 Nov; 16(44):24266-74. PubMed ID: 25297683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of photoelectrical properties of α-Si3N4 nanobelts with surface modifications using first-principles calculations.
    Xiong L; Dai J; Song Y; Wen G; Qin C
    Phys Chem Chem Phys; 2016 Jun; 18(23):15686-96. PubMed ID: 27225041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of oxygen on the surface passivation of InP nanowires.
    Dionízio Moreira M; Venezuela P; Schmidt TM
    Nanotechnology; 2008 Feb; 19(6):065203. PubMed ID: 21730696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface effects on capped and uncapped nanocrystals.
    Bryant GW; Jaskolski W
    J Phys Chem B; 2005 Oct; 109(42):19650-6. PubMed ID: 16853541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ab-initio study of anisotropic and chemical surface modifications of β-SiC nanowires.
    Trejo A; Cuevas JL; Salazar F; Carvajal E; Cruz-Irisson M
    J Mol Model; 2013 May; 19(5):2043-8. PubMed ID: 23086456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic and magnetic properties and structural stability of BeO sheet and nanoribbons.
    Wu W; Lu P; Zhang Z; Guo W
    ACS Appl Mater Interfaces; 2011 Dec; 3(12):4787-95. PubMed ID: 22039765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable electronic properties of partially edge-hydrogenated armchair boron-nitrogen-carbon nanoribbons.
    Alaal N; Medhekar N; Shukla A
    Phys Chem Chem Phys; 2018 Apr; 20(15):10345-10358. PubMed ID: 29610823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semiconducting Graphene on Silicon from First-Principles Calculations.
    Dang X; Dong H; Wang L; Zhao Y; Guo Z; Hou T; Li Y; Lee ST
    ACS Nano; 2015 Aug; 9(8):8562-8. PubMed ID: 26213346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic structure of BSb defective monolayers and nanoribbons.
    Ersan F; Gökoğlu G; Aktürk E
    J Phys Condens Matter; 2014 Aug; 26(32):325303. PubMed ID: 25049113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single ZnO nanobelt based field effect transistors (FETs).
    Park YK; Umar A; Lee EW; Hong DM; Hahn YB
    J Nanosci Nanotechnol; 2009 Oct; 9(10):5745-51. PubMed ID: 19908447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and carbothermal nitridation mechanism of ultra-long single crystal α-Si
    Wang B; Huang X; Zhou XN; Zhi Q; Hao LC; Li ZX; Zhao S; Hou BQ; Yang JF; Ishizaki K
    Nanotechnology; 2020 May; 31(19):194001. PubMed ID: 31978906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First-principles study of the electronic properties of wurtzite, zinc-blende, and twinned InP nanowires.
    Li D; Wang Z; Gao F
    Nanotechnology; 2010 Dec; 21(50):505709. PubMed ID: 21098947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First-principles studies of the electronic and mechanical properties of ZnO nanobelts with different dominant surfaces.
    Qi J; Shi D; Jia J
    Nanotechnology; 2008 Oct; 19(43):435707. PubMed ID: 21832711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A theoretical study of electronic and optical properties of SiC nanowires and their quantum confinement effects.
    Laref A; Alshammari N; Laref S; Luo SJ
    Dalton Trans; 2014 Apr; 43(14):5505-15. PubMed ID: 24535574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magneto-electronic properties of graphene nanoribbons with various edge structures passivated by phosphorus and hydrogen atoms.
    Yu ZL; Wang D; Zhu Z; Zhang ZH
    Phys Chem Chem Phys; 2015 Oct; 17(37):24020-8. PubMed ID: 26313414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable Electronic Properties of Lateral Monolayer Transition Metal Dichalcogenide Superlattice Nanoribbons.
    Wang J; Srivastava GP
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33669836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing the Stability of Orthorhombic CsSnI
    Zheng Y; Fang Z; Shang MH; Du Z; Yang Z; Chou KC; Yang W; Wei S; Hou X
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):34462-34469. PubMed ID: 32631047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First-principles studies on transport properties and contact effects of Cu(111)/ZnO-nanobelt(1010)/Cu(111) systems.
    Sun X; Gu Y; Wang X; Zhang Y
    Phys Chem Chem Phys; 2013 Aug; 15(31):13070-6. PubMed ID: 23817243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fe(NO3)3-assisted large-scale synthesis of Si₃N₄ nanobelts from quartz and graphite by carbothermal reduction-nitridation and their photoluminescence properties.
    Liu S; Fang M; Huang Z; Huang J; Ji H; Liu H; Liu YG; Wu X
    Sci Rep; 2015 Mar; 5():8998. PubMed ID: 25757903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of Electronic Structure of Armchair MoS
    Zhang L; Wan L; Yu Y; Wang B; Xu F; Wei Y; Zhao Y
    J Phys Chem C Nanomater Interfaces; 2015; 119(38):22164-22171. PubMed ID: 26331336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.