BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 25297731)

  • 1. [Involvement of aberrant DNA methylation in hematological malignancies].
    Matsui H
    Rinsho Ketsueki; 2014 Oct; 55(10):1709-14. PubMed ID: 25297731
    [No Abstract]   [Full Text] [Related]  

  • 2. Connections between TET proteins and aberrant DNA modification in cancer.
    Huang Y; Rao A
    Trends Genet; 2014 Oct; 30(10):464-74. PubMed ID: 25132561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epigenetics: reversible tags.
    Wright J
    Nature; 2013 Jun; 498(7455):S10-1. PubMed ID: 23803942
    [No Abstract]   [Full Text] [Related]  

  • 4. [Genome-wide analysis of AML and MDS].
    Ogawa S
    Nihon Rinsho; 2012 Apr; 70 Suppl 2():113-8. PubMed ID: 23133938
    [No Abstract]   [Full Text] [Related]  

  • 5. [The significance of the epigenetics modifying gene mutations in acute myeloid leukemia].
    Wakita S; Yamaguchi H
    Nihon Rinsho; 2014 Jun; 72(6):1026-32. PubMed ID: 25016799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNMT3A(R882H) mutant and Tet2 inactivation cooperate in the deregulation of DNA methylation control to induce lymphoid malignancies in mice.
    Scourzic L; Couronné L; Pedersen MT; Della Valle V; Diop M; Mylonas E; Calvo J; Mouly E; Lopez CK; Martin N; Fontenay M; Bender A; Guibert S; Dubreuil P; Dessen P; Droin N; Pflumio F; Weber M; Gaulard P; Helin K; Mercher T; Bernard OA
    Leukemia; 2016 Jun; 30(6):1388-98. PubMed ID: 26876596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rethinking the gold standard for recurrent DNA mutations detection in acute myeloid leukemia.
    Novaretti MC
    Eur J Haematol; 2016 Feb; 96(2):109-10. PubMed ID: 26110968
    [No Abstract]   [Full Text] [Related]  

  • 8. Genetic and epigenetic alterations of myeloproliferative disorders.
    Milosevic JD; Kralovics R
    Int J Hematol; 2013 Feb; 97(2):183-97. PubMed ID: 23233154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epigenetic Changes in Neoplastic Mast Cells and Potential Impact in Mastocytosis.
    Reszka E; Jabłońska E; Wieczorek E; Valent P; Arock M; Nilsson G; Nedoszytko B; Niedoszytko M
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33803981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TET proteins and 5-methylcytosine oxidation in hematological cancers.
    Ko M; An J; Pastor WA; Koralov SB; Rajewsky K; Rao A
    Immunol Rev; 2015 Jan; 263(1):6-21. PubMed ID: 25510268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [TET2 dysregulation in hematologic malignancies].
    Sakata-Yanagimoto M
    Rinsho Ketsueki; 2014 Oct; 55(10):1893-902. PubMed ID: 25297753
    [No Abstract]   [Full Text] [Related]  

  • 12. Epigenetic Function of TET Family, 5-Methylcytosine, and 5-Hydroxymethylcytosine in Hematologic Malignancies.
    Li W; Xu L
    Oncol Res Treat; 2019; 42(6):309-318. PubMed ID: 31055566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA methyltransferases in hematological malignancies.
    Hoang NM; Rui L
    J Genet Genomics; 2020 Jul; 47(7):361-372. PubMed ID: 32994141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of constitutional TET2 haploinsufficiency on molecular and clinical phenotype in humans.
    Kaasinen E; Kuismin O; Rajamäki K; Ristolainen H; Aavikko M; Kondelin J; Saarinen S; Berta DG; Katainen R; Hirvonen EAM; Karhu A; Taira A; Tanskanen T; Alkodsi A; Taipale M; Morgunova E; Franssila K; Lehtonen R; Mäkinen M; Aittomäki K; Palotie A; Kurki MI; Pietiläinen O; Hilpert M; Saarentaus E; Niinimäki J; Junttila J; Kaikkonen K; Vahteristo P; Skoda RC; Seppänen MRJ; Eklund KK; Taipale J; Kilpivaara O; Aaltonen LA
    Nat Commun; 2019 Mar; 10(1):1252. PubMed ID: 30890702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interpreting new molecular genetics in myelodysplastic syndromes.
    Abdel-Wahab O; Figueroa ME
    Hematology Am Soc Hematol Educ Program; 2012; 2012():56-64. PubMed ID: 23233561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 5-hydroxymethylcytosine in cancer: significance in diagnosis and therapy.
    Vasanthakumar A; Godley LA
    Cancer Genet; 2015 May; 208(5):167-77. PubMed ID: 25892122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A genome-scale map of DNA methylation turnover identifies site-specific dependencies of DNMT and TET activity.
    Ginno PA; Gaidatzis D; Feldmann A; Hoerner L; Imanci D; Burger L; Zilbermann F; Peters AHFM; Edenhofer F; Smallwood SA; Krebs AR; Schübeler D
    Nat Commun; 2020 May; 11(1):2680. PubMed ID: 32471981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrative clinicopathological and molecular analyses of angioimmunoblastic T-cell lymphoma and other nodal lymphomas of follicular helper T-cell origin.
    Dobay MP; Lemonnier F; Missiaglia E; Bastard C; Vallois D; Jais JP; Scourzic L; Dupuy A; Fataccioli V; Pujals A; Parrens M; Le Bras F; Rousset T; Picquenot JM; Martin N; Haioun C; Delarue R; Bernard OA; Delorenzi M; de Leval L; Gaulard P
    Haematologica; 2017 Apr; 102(4):e148-e151. PubMed ID: 28082343
    [No Abstract]   [Full Text] [Related]  

  • 19. Mutant DNMT3A in acute myeloid leukemia: guilty of inducing genetic instability?
    Zebisch A; Hoefler G; Quehenberger F; Wölfler A; Sill H
    Leukemia; 2013 Aug; 27(8):1777-8. PubMed ID: 23417030
    [No Abstract]   [Full Text] [Related]  

  • 20. Comparative molecular analysis of therapy-related and de novo acute promyelocytic leukemia.
    Ottone T; Cicconi L; Hasan SK; Lavorgna S; Divona M; Voso MT; Montefusco E; Melillo L; Barragán E; Platzbecker U; Giannì L; Hubmann M; Pagoni M; Amadori S; Lo-Coco F
    Leuk Res; 2012 Apr; 36(4):474-8. PubMed ID: 22071137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.