These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 25298124)

  • 1. A general approach to spirolactonized Si-rhodamines.
    Wang B; Chai X; Zhu W; Wang T; Wu Q
    Chem Commun (Camb); 2014 Nov; 50(92):14374-7. PubMed ID: 25298124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spirolactonized Si-rhodamine: a novel NIR fluorophore utilized as a platform to construct Si-rhodamine-based probes.
    Wang T; Zhao QJ; Hu HG; Yu SC; Liu X; Liu L; Wu QY
    Chem Commun (Camb); 2012 Sep; 48(70):8781-3. PubMed ID: 22836301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A General Strategy for the Construction of NIR-emitting Si-rhodamines and Their Application for Mitochondrial Temperature Visualization.
    Tang W; Gao H; Li J; Wang X; Zhou Z; Gai L; Feng XJ; Tian J; Lu H; Guo Z
    Chem Asian J; 2020 Sep; 15(17):2724-2730. PubMed ID: 32666700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spiroboronate Si-rhodamine as a near-infrared probe for imaging lysosomes based on the reversible ring-opening process.
    Zhu W; Chai X; Wang B; Zou Y; Wang T; Meng Q; Wu Q
    Chem Commun (Camb); 2015 Jun; 51(47):9608-11. PubMed ID: 25939985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rhodamine-inspired far-red to near-infrared dyes and their application as fluorescence probes.
    Sun YQ; Liu J; Lv X; Liu Y; Zhao Y; Guo W
    Angew Chem Int Ed Engl; 2012 Jul; 51(31):7634-6. PubMed ID: 22674799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a series of near-infrared dark quenchers based on Si-rhodamines and their application to fluorescent probes.
    Myochin T; Hanaoka K; Iwaki S; Ueno T; Komatsu T; Terai T; Nagano T; Urano Y
    J Am Chem Soc; 2015 Apr; 137(14):4759-65. PubMed ID: 25764154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hepatoma-selective imaging of heavy metal ions using a 'clicked' galactosylrhodamine probe.
    Li KB; Zang Y; Wang H; Li J; Chen GR; James TD; He XP; Tian H
    Chem Commun (Camb); 2014 Oct; 50(79):11735-7. PubMed ID: 25144660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The unprecedented J-aggregate formation of rhodamine moieties induced by 9-phenylanthracenyl substitution.
    Kim S; Fujitsuka M; Tohnai N; Tachikawa T; Hisaki I; Miyata M; Majima T
    Chem Commun (Camb); 2015 Jul; 51(58):11580-11583. PubMed ID: 26095853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asymmetric Si-rhodamine scaffolds: rational design of pH-durable protease-activated NIR probes in vivo.
    Li M; Wang C; Wang T; Fan M; Wang N; Ma D; Hu T; Cui X
    Chem Commun (Camb); 2020 Feb; 56(16):2455-2458. PubMed ID: 31996872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silicon Rhodamine-Based Near-Infrared Fluorescent Probe for γ-Glutamyltransferase.
    Iwatate RJ; Kamiya M; Umezawa K; Kashima H; Nakadate M; Kojima R; Urano Y
    Bioconjug Chem; 2018 Feb; 29(2):241-244. PubMed ID: 29323873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A New Infrared Probe Targeting Mitochondria via Regulation of Molecular Hydrophobicity.
    Sung J; Rho JG; Jeon GG; Chu Y; Min JS; Lee S; Kim JH; Kim W; Kim E
    Bioconjug Chem; 2019 Jan; 30(1):210-217. PubMed ID: 30562008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A near-infrared-emitting fluorescent probe for monitoring mitochondrial pH.
    Li P; Xiao H; Cheng Y; Zhang W; Huang F; Zhang W; Wang H; Tang B
    Chem Commun (Camb); 2014 Jul; 50(54):7184-7. PubMed ID: 24866830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of NIR fluorescent dyes based on Si-rhodamine for in vivo imaging.
    Koide Y; Urano Y; Hanaoka K; Piao W; Kusakabe M; Saito N; Terai T; Okabe T; Nagano T
    J Am Chem Soc; 2012 Mar; 134(11):5029-31. PubMed ID: 22390359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aminobenzofuran-fused rhodamine dyes with deep-red to near-infrared emission for biological applications.
    Niu G; Liu W; Wu J; Zhou B; Chen J; Zhang H; Ge J; Wang Y; Xu H; Wang P
    J Org Chem; 2015 Mar; 80(6):3170-5. PubMed ID: 25692322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silicon Substitution in Oxazine Dyes Yields Near-Infrared Azasiline Fluorophores That Absorb and Emit beyond 700 nm.
    Choi A; Miller SC
    Org Lett; 2018 Aug; 20(15):4482-4485. PubMed ID: 30014702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Near-Infrared Phosphorus-Substituted Rhodamine with Emission Wavelength above 700 nm for Bioimaging.
    Chai X; Cui X; Wang B; Yang F; Cai Y; Wu Q; Wang T
    Chemistry; 2015 Nov; 21(47):16754-8. PubMed ID: 26420515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fluorescent probe for detection of an intracellular prognostic indicator in early-stage cancer.
    Ji H; Guan Y; Wu L; Ren J; Miyoshi D; Sugimoto N; Qu X
    Chem Commun (Camb); 2015 Jan; 51(8):1479-82. PubMed ID: 25493923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Red fluorescent scaffold for highly sensitive protease activity probes.
    Kushida Y; Hanaoka K; Komatsu T; Terai T; Ueno T; Yoshida K; Uchiyama M; Nagano T
    Bioorg Med Chem Lett; 2012 Jun; 22(12):3908-11. PubMed ID: 22607681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polar red-emitting rhodamine dyes with reactive groups: synthesis, photophysical properties, and two-color STED nanoscopy applications.
    Kolmakov K; Wurm CA; Meineke DN; Göttfert F; Boyarskiy VP; Belov VN; Hell SW
    Chemistry; 2014 Jan; 20(1):146-57. PubMed ID: 24338798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of an Si-rhodamine-based far-red to near-infrared fluorescence probe selective for hypochlorous acid and its applications for biological imaging.
    Koide Y; Urano Y; Hanaoka K; Terai T; Nagano T
    J Am Chem Soc; 2011 Apr; 133(15):5680-2. PubMed ID: 21443186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.