These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 25298160)

  • 21. Unveiling the inhibition mechanism of
    Jo SH; Jeon HJ; Song WS; Lee JS; Kwon JE; Park JH; Kim YR; Kim MG; Baek JH; Kwon SY; Kim JS; Yang YH; Kim YG
    Front Microbiol; 2023; 14():1293149. PubMed ID: 38029200
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bile salt hydrolase-mediated inhibitory effect of Bacteroides ovatus on growth of Clostridium difficile.
    Yoon S; Yu J; McDowell A; Kim SH; You HJ; Ko G
    J Microbiol; 2017 Nov; 55(11):892-899. PubMed ID: 29076071
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vitro inhibition of Clostridium difficile by commercial probiotics: A microcalorimetric study.
    Fredua-Agyeman M; Stapleton P; Basit AW; Beezer AE; Gaisford S
    Int J Pharm; 2017 Jan; 517(1-2):96-103. PubMed ID: 27923699
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Investigating surface binding effects: antibacterial efficacy of bound 8-hydroxyquinoline against Staphylococcus aureus and Escherichia coli.
    Richards MN; Johnson GR; Lum JS; McDonald R; Salter WB; Simpson K; Stote RE; Owens JR
    J Appl Microbiol; 2021 Nov; 131(5):2212-2222. PubMed ID: 33864329
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fucosyllactose and L-fucose utilization of infant Bifidobacterium longum and Bifidobacterium kashiwanohense.
    Bunesova V; Lacroix C; Schwab C
    BMC Microbiol; 2016 Oct; 16(1):248. PubMed ID: 27782805
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Use of tuf gene-based primers for the PCR detection of probiotic Bifidobacterium species and enumeration of bifidobacteria in fermented milk by cultural and quantitative real-time PCR methods.
    Sheu SJ; Hwang WZ; Chiang YC; Lin WH; Chen HC; Tsen HY
    J Food Sci; 2010 Oct; 75(8):M521-7. PubMed ID: 21535508
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nisin is an effective inhibitor of Clostridium difficile vegetative cells and spore germination.
    Lay CL; Dridi L; Bergeron MG; Ouellette M; Fliss IL
    J Med Microbiol; 2016 Feb; 65(2):169-175. PubMed ID: 26555543
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rapid change of fecal microbiome and disappearance of Clostridium difficile in a colonized infant after transition from breast milk to cow milk.
    Davis MY; Zhang H; Brannan LE; Carman RJ; Boone JH
    Microbiome; 2016 Oct; 4(1):53. PubMed ID: 27717398
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A combination of the probiotic and prebiotic product can prevent the germination of Clostridium difficile spores and infection.
    Rätsep M; Kõljalg S; Sepp E; Smidt I; Truusalu K; Songisepp E; Stsepetova J; Naaber P; Mikelsaar RH; Mikelsaar M
    Anaerobe; 2017 Oct; 47():94-103. PubMed ID: 28465256
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Safety and intestinal microbiota modulation by the exopolysaccharide-producing strains Bifidobacterium animalis IPLA R1 and Bifidobacterium longum IPLA E44 orally administered to Wistar rats.
    Salazar N; Binetti A; Gueimonde M; Alonso A; Garrido P; González del Rey C; González C; Ruas-Madiedo P; de los Reyes-Gavilán CG
    Int J Food Microbiol; 2011 Jan; 144(3):342-51. PubMed ID: 21078530
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bloom and bust: intestinal microbiota dynamics in response to hospital exposures and Clostridium difficile colonization or infection.
    Vincent C; Miller MA; Edens TJ; Mehrotra S; Dewar K; Manges AR
    Microbiome; 2016 Mar; 4():12. PubMed ID: 26975510
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exopolysaccharides produced by Bifidobacterium longum IPLA E44 and Bifidobacterium animalis subsp. lactis IPLA R1 modify the composition and metabolic activity of human faecal microbiota in pH-controlled batch cultures.
    Salazar N; Ruas-Madiedo P; Kolida S; Collins M; Rastall R; Gibson G; de Los Reyes-Gavilán CG
    Int J Food Microbiol; 2009 Nov; 135(3):260-7. PubMed ID: 19735956
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Growth-inhibiting activities of phenethyl isothiocyanate and its derivatives against intestinal bacteria.
    Kim MG; Lee HS
    J Food Sci; 2009 Oct; 74(8):M467-71. PubMed ID: 19799675
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fourier transform infra-red spectroscopy and flow cytometric assessment of the antibacterial mechanism of action of aqueous extract of garlic (Allium sativum) against selected probiotic Bifidobacterium strains.
    Booyens J; Thantsha MS
    BMC Complement Altern Med; 2014 Aug; 14():289. PubMed ID: 25099661
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bifidobacterial strains shared by mother and child as source of probiotics.
    Peirotén A; Arqués JL; Medina M; Rodríguez-Mínguez E
    Benef Microbes; 2018 Feb; 9(2):231-238. PubMed ID: 29488411
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recurrence of dual-strain Clostridium difficile infection in an in vitro human gut model.
    Crowther GS; Chilton CH; Todhunter SL; Nicholson S; Freeman J; Wilcox MH
    J Antimicrob Chemother; 2015 Aug; 70(8):2316-21. PubMed ID: 25925596
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Co-amoxiclav induces proliferation and cytotoxin production of Clostridium difficile ribotype 027 in a human gut model.
    Chilton CH; Freeman J; Crowther GS; Todhunter SL; Nicholson S; Wilcox MH
    J Antimicrob Chemother; 2012 Apr; 67(4):951-4. PubMed ID: 22279183
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Clostridium difficile, the Difficult "Kloster" Fuelled by Antibiotics.
    Dicks LMT; Mikkelsen LS; Brandsborg E; Marcotte H
    Curr Microbiol; 2019 Jun; 76(6):774-782. PubMed ID: 30084095
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Time-kill kinetics of cadazolid and comparator antibacterial agents against different ribotypes of Clostridium difficile.
    Skinner K; Birchall S; Corbett D; Thommes P; Locher HH
    J Med Microbiol; 2018 Sep; 67(9):1402-1409. PubMed ID: 30052178
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mutual Cross-Feeding Interactions between Bifidobacterium longum subsp. longum NCC2705 and Eubacterium rectale ATCC 33656 Explain the Bifidogenic and Butyrogenic Effects of Arabinoxylan Oligosaccharides.
    Rivière A; Gagnon M; Weckx S; Roy D; De Vuyst L
    Appl Environ Microbiol; 2015 Nov; 81(22):7767-81. PubMed ID: 26319874
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.