These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 25298407)
1. The landscape of somatic chromosomal copy number aberrations in GEM models of prostate carcinoma. Bianchi-Frias D; Hernandez SA; Coleman R; Wu H; Nelson PS Mol Cancer Res; 2015 Feb; 13(2):339-47. PubMed ID: 25298407 [TBL] [Abstract][Full Text] [Related]
2. Cells Comprising the Prostate Cancer Microenvironment Lack Recurrent Clonal Somatic Genomic Aberrations. Bianchi-Frias D; Basom R; Delrow JJ; Coleman IM; Dakhova O; Qu X; Fang M; Franco OE; Ericson NG; Bielas JH; Hayward SW; True L; Morrissey C; Brown L; Bhowmick NA; Rowley D; Ittmann M; Nelson PS Mol Cancer Res; 2016 Apr; 14(4):374-84. PubMed ID: 26753621 [TBL] [Abstract][Full Text] [Related]
3. Recurrent and nonrandom DNA copy number and chromosome alterations in Myc transgenic mouse model for hepatocellular carcinogenesis: implications for human disease. Zimonjic DB; Ullmannova-Benson V; Factor VM; Thorgeirsson SS; Popescu NC Cancer Genet Cytogenet; 2009 May; 191(1):17-26. PubMed ID: 19389504 [TBL] [Abstract][Full Text] [Related]
4. DNA in situ hybridization (interphase cytogenetics) versus comparative genomic hybridization (CGH) in human cancer: detection of numerical and structural chromosome aberrations. Van Dekken H; Krijtenburg PJ; Alers JC Acta Histochem; 2000 Feb; 102(1):85-94. PubMed ID: 10726167 [TBL] [Abstract][Full Text] [Related]
5. Identifying actionable targets through integrative analyses of GEM model and human prostate cancer genomic profiling. Wanjala J; Taylor BS; Chapinski C; Hieronymus H; Wongvipat J; Chen Y; Nanjangud GJ; Schultz N; Xie Y; Liu S; Lu W; Yang Q; Sander C; Chen Z; Sawyers CL; Carver BS Mol Cancer Ther; 2015 Jan; 14(1):278-88. PubMed ID: 25381262 [TBL] [Abstract][Full Text] [Related]
6. Breast and prostate cancers harbor common somatic copy number alterations that consistently differ by race and are associated with survival. Chen Y; Sadasivan SM; She R; Datta I; Taneja K; Chitale D; Gupta N; Davis MB; Newman LA; Rogers CG; Paris PL; Li J; Rybicki BA; Levin AM BMC Med Genomics; 2020 Aug; 13(1):116. PubMed ID: 32819446 [TBL] [Abstract][Full Text] [Related]
7. Combined MYC Activation and Pten Loss Are Sufficient to Create Genomic Instability and Lethal Metastatic Prostate Cancer. Hubbard GK; Mutton LN; Khalili M; McMullin RP; Hicks JL; Bianchi-Frias D; Horn LA; Kulac I; Moubarek MS; Nelson PS; Yegnasubramanian S; De Marzo AM; Bieberich CJ Cancer Res; 2016 Jan; 76(2):283-92. PubMed ID: 26554830 [TBL] [Abstract][Full Text] [Related]
8. Recurrent copy number alterations in prostate cancer: an in silico meta-analysis of publicly available genomic data. Williams JL; Greer PA; Squire JA Cancer Genet; 2014; 207(10-12):474-88. PubMed ID: 25434580 [TBL] [Abstract][Full Text] [Related]
9. Chromosomal changes during development and progression of prostate adenocarcinomas. Zitzelsberger H; Engert D; Walch A; Kulka U; Aubele M; Höfler H; Bauchinger M; Werner M Br J Cancer; 2001 Jan; 84(2):202-8. PubMed ID: 11161378 [TBL] [Abstract][Full Text] [Related]
10. Comparative genomic hybridization reveals DNA copy number gains to frequently occur in human prostate cancer. Sattler HP; Rohde V; Bonkhoff H; Zwergel T; Wullich B Prostate; 1999 May; 39(2):79-86. PubMed ID: 10221562 [TBL] [Abstract][Full Text] [Related]
11. Landscape of somatic allelic imbalances and copy number alterations in human lung carcinoma. Staaf J; Isaksson S; Karlsson A; Jönsson M; Johansson L; Jönsson P; Botling J; Micke P; Baldetorp B; Planck M Int J Cancer; 2013 May; 132(9):2020-31. PubMed ID: 23023297 [TBL] [Abstract][Full Text] [Related]
12. A mouse model of heterogeneous, c-MYC-initiated prostate cancer with loss of Pten and p53. Kim J; Roh M; Doubinskaia I; Algarroba GN; Eltoum IE; Abdulkadir SA Oncogene; 2012 Jan; 31(3):322-32. PubMed ID: 21685943 [TBL] [Abstract][Full Text] [Related]
13. Genetic aberrations in prostate carcinoma detected by comparative genomic hybridization and microsatellite analysis: association with progression and angiogenesis. Strohmeyer DM; Berger AP; Moore DH; Bartsch G; Klocker H; Carroll PR; Loening SA; Jensen RH Prostate; 2004 Apr; 59(1):43-58. PubMed ID: 14991865 [TBL] [Abstract][Full Text] [Related]
14. Single-cell genetic analysis reveals insights into clonal development of prostate cancers and indicates loss of PTEN as a marker of poor prognosis. Heselmeyer-Haddad KM; Berroa Garcia LY; Bradley A; Hernandez L; Hu Y; Habermann JK; Dumke C; Thorns C; Perner S; Pestova E; Burke C; Chowdhury SA; Schwartz R; Schäffer AA; Paris PL; Ried T Am J Pathol; 2014 Oct; 184(10):2671-86. PubMed ID: 25131421 [TBL] [Abstract][Full Text] [Related]
15. Comparison of chromosomal and array-based comparative genomic hybridization for the detection of genomic imbalances in primary prostate carcinomas. Ribeiro FR; Henrique R; Hektoen M; Berg M; Jerónimo C; Teixeira MR; Lothe RA Mol Cancer; 2006 Sep; 5():33. PubMed ID: 16952311 [TBL] [Abstract][Full Text] [Related]
16. Genetic alterations in untreated metastases and androgen-independent prostate cancer detected by comparative genomic hybridization and allelotyping. Cher ML; Bova GS; Moore DH; Small EJ; Carroll PR; Pin SS; Epstein JI; Isaacs WB; Jensen RH Cancer Res; 1996 Jul; 56(13):3091-102. PubMed ID: 8674067 [TBL] [Abstract][Full Text] [Related]
17. Clusterin is epigenetically regulated in prostate cancer. Rauhala HE; Porkka KP; Saramäki OR; Tammela TL; Visakorpi T Int J Cancer; 2008 Oct; 123(7):1601-9. PubMed ID: 18649357 [TBL] [Abstract][Full Text] [Related]
18. Copy number alterations in small intestinal neuroendocrine tumors determined by array comparative genomic hybridization. Hashemi J; Fotouhi O; Sulaiman L; Kjellman M; Höög A; Zedenius J; Larsson C BMC Cancer; 2013 Oct; 13():505. PubMed ID: 24165089 [TBL] [Abstract][Full Text] [Related]
19. Chromosomal changes in incidental prostatic carcinomas detected by comparative genomic hybridization. Wolter H; Trijic D; Gottfried HW; Mattfeldt T Eur Urol; 2002 Mar; 41(3):328-34. PubMed ID: 12180237 [TBL] [Abstract][Full Text] [Related]
20. Array CGH analysis reveals chromosomal aberrations in mouse lung adenocarcinomas induced by the human lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Herzog CR; Desai D; Amin S Biochem Biophys Res Commun; 2006 Mar; 341(3):856-63. PubMed ID: 16455056 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]