BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 25298537)

  • 1. Fast and efficient Drosophila melanogaster gene knock-ins using MiMIC transposons.
    Vilain S; Vanhauwaert R; Maes I; Schoovaerts N; Zhou L; Soukup S; da Cunha R; Lauwers E; Fiers M; Verstreken P
    G3 (Bethesda); 2014 Oct; 4(12):2381-7. PubMed ID: 25298537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scarless Modification of the Drosophila Genome Near Any Mapped attP Sites.
    Feng S; Mann RS
    Curr Protoc; 2023 Aug; 3(8):e855. PubMed ID: 37540775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MiMIC: a highly versatile transposon insertion resource for engineering Drosophila melanogaster genes.
    Venken KJ; Schulze KL; Haelterman NA; Pan H; He Y; Evans-Holm M; Carlson JW; Levis RW; Spradling AC; Hoskins RA; Bellen HJ
    Nat Methods; 2011 Sep; 8(9):737-43. PubMed ID: 21985007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide manipulations of Drosophila melanogaster with transposons, Flp recombinase, and ΦC31 integrase.
    Venken KJ; Bellen HJ
    Methods Mol Biol; 2012; 859():203-28. PubMed ID: 22367874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust ΦC31-Mediated Genome Engineering in
    Voutev R; Mann RS
    G3 (Bethesda); 2018 May; 8(5):1399-1402. PubMed ID: 29523637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A powerful method combining homologous recombination and site-specific recombination for targeted mutagenesis in Drosophila.
    Gao G; McMahon C; Chen J; Rong YS
    Proc Natl Acad Sci U S A; 2008 Sep; 105(37):13999-4004. PubMed ID: 18772376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of Drosophila attP containing cell lines using CRISPR-Cas9.
    Mariyappa D; Luhur A; Overton D; Zelhof AC
    G3 (Bethesda); 2021 Aug; 11(8):. PubMed ID: 33963853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical mutagens, transposons, and transgenes to interrogate gene function in Drosophila melanogaster.
    Venken KJ; Bellen HJ
    Methods; 2014 Jun; 68(1):15-28. PubMed ID: 24583113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeted engineering of the Drosophila genome.
    Huang J; Zhou W; Dong W; Hong Y
    Fly (Austin); 2009; 3(4):274-7. PubMed ID: 19823033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scarless engineering of the Drosophila genome near any site-specific integration site.
    Feng S; Lu S; Grueber WB; Mann RS
    Genetics; 2021 Mar; 217(3):. PubMed ID: 33772309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An efficient CRISPR-based strategy to insert small and large fragments of DNA using short homology arms.
    Kanca O; Zirin J; Garcia-Marques J; Knight SM; Yang-Zhou D; Amador G; Chung H; Zuo Z; Ma L; He Y; Lin WW; Fang Y; Ge M; Yamamoto S; Schulze KL; Hu Y; Spradling AC; Mohr SE; Perrimon N; Bellen HJ
    Elife; 2019 Nov; 8():. PubMed ID: 31674908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transposable elements as tools for genomics and genetics in Drosophila.
    Ryder E; Russell S
    Brief Funct Genomic Proteomic; 2003 Apr; 2(1):57-71. PubMed ID: 15239944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of extra sequences with I-SceI in combination with CRISPR/Cas9 technique for precise gene editing in Drosophila.
    Zolotarev N; Georgiev P; Maksimenko O
    Biotechniques; 2019 Apr; 66(4):198-201. PubMed ID: 30987444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Precise genome editing by homologous recombination.
    Hoshijima K; Jurynec MJ; Grunwald DJ
    Methods Cell Biol; 2016; 135():121-47. PubMed ID: 27443923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of New Hairless Alleles by Genomic Engineering at the Hairless Locus in Drosophila melanogaster.
    Praxenthaler H; Smylla TK; Nagel AC; Preiss A; Maier D
    PLoS One; 2015; 10(10):e0140007. PubMed ID: 26448463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of heterologous insertions on gene conversion in mitotically dividing cells in Drosophila melanogaster.
    Coveny AM; Dray T; Gloor GB
    Genetics; 2002 May; 161(1):249-58. PubMed ID: 12019238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An efficient method to generate chromosomal rearrangements by targeted DNA double-strand breaks in Drosophila melanogaster.
    Egli D; Hafen E; Schaffner W
    Genome Res; 2004 Jul; 14(7):1382-93. PubMed ID: 15197166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Knock-in/Knock-out (KIKO) vectors for rapid integration of large DNA sequences, including whole metabolic pathways, onto the Escherichia coli chromosome at well-characterised loci.
    Sabri S; Steen JA; Bongers M; Nielsen LK; Vickers CE
    Microb Cell Fact; 2013 Jun; 12():60. PubMed ID: 23799955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene-specific cell labeling using MiMIC transposons.
    Gnerer JP; Venken KJ; Dierick HA
    Nucleic Acids Res; 2015 Apr; 43(8):e56. PubMed ID: 25712101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transgenesis upgrades for Drosophila melanogaster.
    Venken KJ; Bellen HJ
    Development; 2007 Oct; 134(20):3571-84. PubMed ID: 17905790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.