These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 25298917)

  • 1. Quantitative cerebral perfusion assessment using microscope-integrated analysis of intraoperative indocyanine green fluorescence angiography versus positron emission tomography in superficial temporal artery to middle cerebral artery anastomosis.
    Kobayashi S; Ishikawa T; Tanabe J; Moroi J; Suzuki A
    Surg Neurol Int; 2014; 5():135. PubMed ID: 25298917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlation between reduction in microvascular transit time after superficial temporal artery-middle cerebral artery bypass surgery for moyamoya disease and the development of postoperative hyperperfusion syndrome.
    Yang T; Higashino Y; Kataoka H; Hamano E; Maruyama D; Iihara K; Takahashi JC
    J Neurosurg; 2018 May; 128(5):1304-1310. PubMed ID: 28498060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Semiquantitative analysis of indocyanine green videoangiography for cortical perfusion assessment in superficial temporal artery to middle cerebral artery anastomosis.
    Uchino H; Nakamura T; Houkin K; Murata J; Saito H; Kuroda S
    Acta Neurochir (Wien); 2013 Apr; 155(4):599-605. PubMed ID: 23287901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combination of intraoperative indocyanine green video-angiography FLOW 800 and computed tomography perfusion to assess the risk of cerebral hyperperfusion syndrome in chronic internal carotid artery occlusion patients after revascularization surgery.
    Du J; Shen J; Li J; Zhang F; Mao R; Xu Y; Duan Y
    Front Neurol; 2023; 14():1323626. PubMed ID: 38125835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of Hemodynamic Changes and Hyperperfusion Risk After Extracranial-to-Intracranial Bypass Surgery Using Intraoperative Indocyanine Green-Based Flow Analysis.
    Rennert RC; Strickland BA; Ravina K; Bakhsheshian J; Russin JJ
    World Neurosurg; 2018 Jun; 114():352-360. PubMed ID: 29626683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of Hemodynamic Change by Indocyanine Green-FLOW 800 Videoangiography Mapping: Prediction of Hyperperfusion Syndrome in Patients with Moyamoya Disease.
    Zhang X; Ni W; Feng R; Li Y; Lei Y; Xia D; Gao P; Yang S; Gu Y
    Oxid Med Cell Longev; 2020; 2020():8561609. PubMed ID: 32850003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intraoperative middle cerebral artery pressure measurements during superficial temporal artery to middle cerebral artery bypass procedures in patients with cerebral atherosclerotic disease.
    Matano F; Murai Y; Tanikawa R; Kamiyama H; Tateyama K; Tamaki T; Mizunari T; Mizumura S; Kobayashi S; Teramoto A; Morita A
    J Neurosurg; 2016 Dec; 125(6):1367-1373. PubMed ID: 26943849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intraoperative EC-IC bypass blood flow assessment with indocyanine green angiography in moyamoya and non-moyamoya ischemic stroke.
    Awano T; Sakatani K; Yokose N; Kondo Y; Igarashi T; Hoshino T; Nakamura S; Fujiwara N; Murata Y; Katayama Y; Shikayama T; Miwa M
    World Neurosurg; 2010 Jun; 73(6):668-74. PubMed ID: 20934154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel Hyperspectral Imaging System for Intraoperative Prediction of Cerebral Hyperperfusion Syndrome after Superficial Temporal Artery-Middle Cerebral Artery Anastomosis in Patients with Moyamoya Disease.
    Iwaki K; Takagishi S; Arimura K; Murata M; Chiba T; Nishimura A; Ren N; Iihara K
    Cerebrovasc Dis; 2021; 50(2):208-215. PubMed ID: 33596563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clinical values of intraoperative indocyanine green fluorescence video angiography with Flow 800 software in cerebrovascular surgery.
    Ye X; Liu XJ; Ma L; Liu LT; Wang WL; Wang S; Cao Y; Zhang D; Wang R; Zhao JZ; Zhao YL
    Chin Med J (Engl); 2013 Nov; 126(22):4232-7. PubMed ID: 24238503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-of-Flight MR Angiography for Detection of Cerebral Hyperperfusion Syndrome after Superficial Temporal Artery-Middle Cerebral Artery Anastomosis in Moyamoya Disease.
    Sato K; Yamada M; Kuroda H; Yamamoto D; Asano Y; Inoue Y; Fujii K; Kumabe T
    AJNR Am J Neuroradiol; 2016 Jul; 37(7):1244-8. PubMed ID: 26939637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of Cerebral Hyperperfusion after Superficial Temporal Artery-Middle Cerebral Artery Anastomosis by Three-Dimensional-Time-of-Flight Magnetic Resonance Angiography in Adult Patients with Moyamoya Disease.
    Nishizawa T; Fujimura M; Katsuki M; Mugikura S; Tashiro R; Sato K; Tominaga T
    Cerebrovasc Dis; 2020; 49(4):396-403. PubMed ID: 32829323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-of-flight MRA signal intensity predicts the cerebral hemodynamic status after superficial temporal artery to middle cerebral artery anastomosis.
    Matsuo S; Nakamizo A; Fujioka Y; Amano T; Yasaka M; Okada Y; Nagata S
    J Clin Neurosci; 2019 Jan; 59():124-129. PubMed ID: 30396815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in computed tomography perfusion parameters after superficial temporal artery to middle cerebral artery bypass: an analysis of 29 cases.
    Serrone JC; Jimenez L; Hanseman DJ; Carroll CP; Grossman AW; Wang L; Vagal A; Choutka O; Andaluz N; Ringer AJ; Abruzzo T; Zuccarello M
    J Neurol Surg B Skull Base; 2014 Dec; 75(6):371-7. PubMed ID: 25452893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Diagnostic value of perfusion-weighted MRI for evaluating postoperative alteration of cerebral hemodynamics following STA-MCA anastomosis in patients with moyamoya disease].
    Fujimura M; Mugikura S; Shimizu H; Tominaga T
    No Shinkei Geka; 2006 Aug; 34(8):801-9. PubMed ID: 16910493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The feasibility of detecting cerebral blood flow direction using the indocyanine green video angiography.
    Murai Y; Nakagawa S; Matano F; Shirokane K; Teramoto A; Morita A
    Neurosurg Rev; 2016 Oct; 39(4):685-90. PubMed ID: 27136915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Whole-Field Indocyanine Green Intensity Analysis to Intraoperatively Predict Cerebral Hyperperfusion Syndrome Following Superficial Temporal Artery-Middle Cerebral Artery Bypass: A Retrospective Case-Control Study in 7-Year Experience With 112 Cases.
    Sato Y; Sugiyama T; Mizutani T
    Oper Neurosurg (Hagerstown); 2020 Jun; 18(6):652-659. PubMed ID: 31538195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adult Moyamoya disease: 320-multidetector row CT for evaluation of revascularization in STA-MCA bypasses surgery.
    Tian B; Xu B; Liu Q; Hao Q; Lu J
    Eur J Radiol; 2013 Dec; 82(12):2342-7. PubMed ID: 24094737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microscope-integrated quantitative analysis of intraoperative indocyanine green fluorescence angiography for blood flow assessment: first experience in 30 patients.
    Kamp MA; Slotty P; Turowski B; Etminan N; Steiger HJ; Hänggi D; Stummer W
    Neurosurgery; 2012 Mar; 70(1 Suppl Operative):65-73; discussion 73-4. PubMed ID: 21811190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intraoperative control of extracranial-intracranial bypass patency by near-infrared indocyanine green videoangiography.
    Woitzik J; Horn P; Vajkoczy P; Schmiedek P
    J Neurosurg; 2005 Apr; 102(4):692-8. PubMed ID: 15871512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.