These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 2529911)
1. [Formation of taurine and amino acid pools in rat tissues upon stimulation of NAD synthesis]. Nefedov LI; Bukhmet MI; Ostrovskiĭ IuM; Moroz AR Biokhimiia; 1989 Jul; 54(7):1200-5. PubMed ID: 2529911 [TBL] [Abstract][Full Text] [Related]
2. Dietary casein levels and taurine supplementation. Effects on cysteine dioxygenase and cysteine sulfinate decarboxylase activities and tuarine concentration in brain, liver and kidney of the rat. Loriette C; Pasantes-Morales H; Portemer C; Chatagner F Nutr Metab; 1979; 23(6):467-75. PubMed ID: 547206 [TBL] [Abstract][Full Text] [Related]
3. Nutritional significance of cysteine dioxygenase on the biological evaluation of dietary protein in growing rats. Yamaguchi K; Hosokawa Y; Niizeki S; Tojo H; Sato I Prog Clin Biol Res; 1985; 179():23-32. PubMed ID: 3933014 [No Abstract] [Full Text] [Related]
4. The effect of nicotinamide and homologs on the activity of inducible enzymes and NAD content of the rat liver. Blake RL; Blake SL; Loh HH; Kun E Mol Pharmacol; 1967 Sep; 3(5):412-22. PubMed ID: 4383205 [No Abstract] [Full Text] [Related]
5. Changes in cysteine dioxygenase and cysteinesulfinate decarboxylase activities and taurine levels in tissues of pregnant or lactating rat dams and their fetuses or pups. Kuo SM; Stipanuk MH Biol Neonate; 1984; 46(5):237-48. PubMed ID: 6509133 [TBL] [Abstract][Full Text] [Related]
6. Taurine metabolism in experimental renal failure. Michalk DV; Essich HJ; Böhles HJ; Schärer K Kidney Int Suppl; 1983 Nov; 15():S16-21. PubMed ID: 6584673 [TBL] [Abstract][Full Text] [Related]
7. Functional characterization and regulation of the taurine transporter and cysteine dioxygenase in human hepatoblastoma HepG2 cells. Satsu H; Terasawa E; Hosokawa Y; Shimizu M Biochem J; 2003 Oct; 375(Pt 2):441-7. PubMed ID: 12871209 [TBL] [Abstract][Full Text] [Related]
8. Effects of prolonged guanidinoethanesulphonate administration on taurine and other amino acids in rat tissues. Marnela KM; Kontro P; Oja SS Med Biol; 1984; 62(4):239-44. PubMed ID: 6513616 [TBL] [Abstract][Full Text] [Related]
9. Regulation of cysteine dioxygenase and gamma-glutamylcysteine synthetase is associated with hepatic cysteine level. Lee JI; Londono M; Hirschberger LL; Stipanuk MH J Nutr Biochem; 2004 Feb; 15(2):112-22. PubMed ID: 14972351 [TBL] [Abstract][Full Text] [Related]
10. [Influence of taurine-zinc sulfate composition on the free amino acid level in blood plasma and the liver]. Sheĭbak VM; Smirnov VIu; Sukhotskaia GM; Goretskaia MV Eksp Klin Farmakol; 2007; 70(5):27-9. PubMed ID: 18074803 [TBL] [Abstract][Full Text] [Related]
11. The effect of taurine administration on vitamin C levels of several tissues in mice. Kaplan B; Dinçer S; Babül A; Duyar I Amino Acids; 2004 Oct; 27(2):225-8. PubMed ID: 15503229 [TBL] [Abstract][Full Text] [Related]
12. Tissue contents and urinary excretion of taurine after administration of L-cysteine and L-2-oxothiazolidine-4-carboxylate to rats. Taguchi T; Akagi R; Ubuka T Acta Med Okayama; 1990 Jun; 44(3):123-8. PubMed ID: 2382577 [TBL] [Abstract][Full Text] [Related]
13. Taurine supplementation improves the utilization of sulfur-containing amino acids in rats continually administrated alcohol. Yang HT; Chien YW; Tsen JH; Chang CC; Chang JH; Huang SY J Nutr Biochem; 2009 Feb; 20(2):132-9. PubMed ID: 18547794 [TBL] [Abstract][Full Text] [Related]
14. Cysteine sulfinate decarboxylase and cysteine dioxygenase activities do not correlate with strain-specific changes in hepatic and cerebellar taurine content in aged rats. Eppler B; Dawson R Mech Ageing Dev; 1999 Oct; 110(1-2):57-72. PubMed ID: 10580692 [TBL] [Abstract][Full Text] [Related]
15. [Acid-soluble CoA and free amino acid levels in the liver of pantothenic acid-deficient albino rats after separate and combined administration of panthotenic acid and cysteine]. Moĭseenok AG; Nefedov LI; Sheĭbak VM; Omel'ianchik SN Vopr Pitan; 1984; (4):37-9. PubMed ID: 6485295 [TBL] [Abstract][Full Text] [Related]
16. Gene expression of the transporters and biosynthetic enzymes of the osmolytes in astrocyte primary cultures exposed to hyperosmotic conditions. Bitoun M; Tappaz M Glia; 2000 Nov; 32(2):165-76. PubMed ID: 11008216 [TBL] [Abstract][Full Text] [Related]
17. Methods to study changing free amino acid pools during embryonic chick development. van Gelder NM; Bélanger F J Neurosci Res; 1988; 19(1):101-9. PubMed ID: 3343701 [TBL] [Abstract][Full Text] [Related]
18. The ubiquitin-proteasome system is responsible for cysteine-responsive regulation of cysteine dioxygenase concentration in liver. Stipanuk MH; Hirschberger LL; Londono MP; Cresenzi CL; Yu AF Am J Physiol Endocrinol Metab; 2004 Mar; 286(3):E439-48. PubMed ID: 14644768 [TBL] [Abstract][Full Text] [Related]
19. Regulatory role of cysteine dioxygenase in cerebral biosynthesis of taurine. Analysis using cerebellum from 3-acetylpyridine-treated rat. Ida S; Ohkuma S; Kimori M; Kuriyama K; Morimoto N; Ibata Y Brain Res; 1985 Sep; 344(1):62-9. PubMed ID: 4041869 [TBL] [Abstract][Full Text] [Related]
20. The role of glutamine transaminase K (GTK) in sulfur and alpha-keto acid metabolism in the brain, and in the possible bioactivation of neurotoxicants. Cooper AJ Neurochem Int; 2004 Jun; 44(8):557-77. PubMed ID: 15016471 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]