BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 25299922)

  • 1. Miniaturizing wireless implants.
    Mei H; Irazoqui PP
    Nat Biotechnol; 2014 Oct; 32(10):1008-10. PubMed ID: 25299922
    [No Abstract]   [Full Text] [Related]  

  • 2. Wireless power transfer to deep-tissue microimplants.
    Ho JS; Yeh AJ; Neofytou E; Kim S; Tanabe Y; Patlolla B; Beygui RE; Poon AS
    Proc Natl Acad Sci U S A; 2014 Jun; 111(22):7974-9. PubMed ID: 24843161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feasibility of retroreflective transdermal optical wireless communication.
    Gil Y; Rotter N; Arnon S
    Appl Opt; 2012 Jun; 51(18):4232-9. PubMed ID: 22722303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laser Driven Miniature Diamond Implant for Wireless Retinal Prostheses.
    Ahnood A; Cheriton R; Bruneau A; Belcourt JA; Ndabakuranye JP; Lemaire W; Hilkes R; Fontaine R; Cook JPD; Hinzer K; Prawer S
    Adv Biosyst; 2020 Nov; 4(11):e2000055. PubMed ID: 33084251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy-quality system design for in-body communication.
    Zhang Y; Li Y; Qiao D; Zhang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4876-9. PubMed ID: 19963632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The evolution of integrated passive components in medical devices.
    Brown ST
    Med Device Technol; 2003 Mar; 14(2):30-1. PubMed ID: 12698698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implementation of multichannel sensors for remote biomedical measurements in a microsystems format.
    Johannessen EA; Wang L; Cui L; Tang TB; Ahmadian M; Astaras A; Reid SW; Yam PS; Murray AF; Flynn BW; Beaumont SP; Cumming DR; Cooper JM
    IEEE Trans Biomed Eng; 2004 Mar; 51(3):525-35. PubMed ID: 15000383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A wireless power interface for rechargeable battery operated neural recording implants.
    Li P; Principe JC; Bashirullah R
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():6253-6. PubMed ID: 17946366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A high-power versatile wireless power transfer for biomedical implants.
    Jiang H; Zhang JM; Liou SS; Fechter R; Hirose S; Harrison M; Roy S
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():6437-40. PubMed ID: 21096712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New architecture for wireless implantable neural recording microsystems based on frequency-division multiplexing.
    Rajabi-Tavakkol A; Sodagar AM; Refan MH
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():6449-52. PubMed ID: 21096715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wireless Power Transfer to Millimeter-Sized Gastrointestinal Electronics Validated in a Swine Model.
    Abid A; O'Brien JM; Bensel T; Cleveland C; Booth L; Smith BR; Langer R; Traverso G
    Sci Rep; 2017 Apr; 7():46745. PubMed ID: 28447624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A two-hop wireless power transfer system with an efficiency-enhanced power receiver for motion-free capsule endoscopy inspection.
    Sun T; Xie X; Li G; Gu Y; Deng Y; Wang Z
    IEEE Trans Biomed Eng; 2012 Nov; 59(11):3247-54. PubMed ID: 22759436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical power transfer and communication methods for wireless implantable sensing platforms.
    Mujeeb-U-Rahman M; Adalian D; Chang CF; Scherer A
    J Biomed Opt; 2015 Sep; 20(9):095012. PubMed ID: 26405820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro cytotoxicity testing and the application of elastic interconnection technology for short-term implantable electronics.
    Brosteaux D; Lippens E; Cornelissen R; Schacht E; Carta R; Jourand P; Puers R; Axisa F; Vervust T; Bossuyt F; Vanfleteren J
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4880-3. PubMed ID: 19963633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel fully implantable wireless sensor system for monitoring hypertension patients.
    Cleven NJ; Müntjes JA; Fassbender H; Urban U; Görtz M; Vogt H; Gräfe M; Göttsche T; Penzkofer T; Schmitz-Rode T; Mokwa W
    IEEE Trans Biomed Eng; 2012 Nov; 59(11):3124-30. PubMed ID: 22955864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of dual band power and data telemetry for biomedical implants.
    Guoxing Wang ; Peijun Wang ; Yina Tang ; Wentai Liu
    IEEE Trans Biomed Circuits Syst; 2012 Jun; 6(3):208-15. PubMed ID: 23853143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On-demand wireless infusion rate control in an implantable micropump for patient-tailored treatment of chronic conditions.
    Sheybani R; Meng E
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():882-5. PubMed ID: 25570100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A package design technique for size reduction of implantable bioelectronic systems.
    Soma M
    IEEE Trans Biomed Eng; 1990 May; 37(5):482-8. PubMed ID: 2345004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Powering Electronic Implants by High Frequency Volume Conduction: In Human Validation.
    Minguillon J; Tudela-Pi M; Becerra-Fajardo L; Perera-Bel E; Del-Ama AJ; Gil-Agudo A; Megia-Garcia A; Garcia-Moreno A; Ivorra A
    IEEE Trans Biomed Eng; 2023 Feb; 70(2):659-670. PubMed ID: 35994554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A low-power noncoherent BPSK demodulator and clock recovery circuit for high-data-rate biomedical applications.
    Asgarian F; Sodagar AM
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4840-3. PubMed ID: 19963861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.