These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 25299936)
1. Probing the origins of catalytic discrimination between phosphate and sulfate monoester hydrolysis: comparative analysis of alkaline phosphatase and protein tyrosine phosphatases. Andrews LD; Zalatan JG; Herschlag D Biochemistry; 2014 Nov; 53(43):6811-9. PubMed ID: 25299936 [TBL] [Abstract][Full Text] [Related]
2. Functional interrelationships in the alkaline phosphatase superfamily: phosphodiesterase activity of Escherichia coli alkaline phosphatase. O'Brien PJ; Herschlag D Biochemistry; 2001 May; 40(19):5691-9. PubMed ID: 11341834 [TBL] [Abstract][Full Text] [Related]
3. Kinetic isotope effects for alkaline phosphatase reactions: implications for the role of active-site metal ions in catalysis. Zalatan JG; Catrina I; Mitchell R; Grzyska PK; O'brien PJ; Herschlag D; Hengge AC J Am Chem Soc; 2007 Aug; 129(31):9789-98. PubMed ID: 17630738 [TBL] [Abstract][Full Text] [Related]
4. Probing the origin of the compromised catalysis of E. coli alkaline phosphatase in its promiscuous sulfatase reaction. Catrina I; O'Brien PJ; Purcell J; Nikolic-Hughes I; Zalatan JG; Hengge AC; Herschlag D J Am Chem Soc; 2007 May; 129(17):5760-5. PubMed ID: 17411045 [TBL] [Abstract][Full Text] [Related]
5. Alkaline phosphatase mono- and diesterase reactions: comparative transition state analysis. Zalatan JG; Herschlag D J Am Chem Soc; 2006 Feb; 128(4):1293-303. PubMed ID: 16433548 [TBL] [Abstract][Full Text] [Related]
6. Do electrostatic interactions with positively charged active site groups tighten the transition state for enzymatic phosphoryl transfer? Nikolic-Hughes I; Rees DC; Herschlag D J Am Chem Soc; 2004 Sep; 126(38):11814-9. PubMed ID: 15382915 [TBL] [Abstract][Full Text] [Related]
7. Alkaline phosphatase catalysis is ultrasensitive to charge sequestered between the active site zinc ions. Nikolic-Hughes I; O'brien PJ; Herschlag D J Am Chem Soc; 2005 Jul; 127(26):9314-5. PubMed ID: 15984827 [TBL] [Abstract][Full Text] [Related]
12. Structural and functional comparisons of nucleotide pyrophosphatase/phosphodiesterase and alkaline phosphatase: implications for mechanism and evolution. Zalatan JG; Fenn TD; Brunger AT; Herschlag D Biochemistry; 2006 Aug; 45(32):9788-803. PubMed ID: 16893180 [TBL] [Abstract][Full Text] [Related]
13. Promiscuous sulfatase activity and thio-effects in a phosphodiesterase of the alkaline phosphatase superfamily. Lassila JK; Herschlag D Biochemistry; 2008 Dec; 47(48):12853-9. PubMed ID: 18975918 [TBL] [Abstract][Full Text] [Related]
14. Site-directed mutagenesis maps interactions that enhance cognate and limit promiscuous catalysis by an alkaline phosphatase superfamily phosphodiesterase. Wiersma-Koch H; Sunden F; Herschlag D Biochemistry; 2013 Dec; 52(51):9167-76. PubMed ID: 24261692 [TBL] [Abstract][Full Text] [Related]
15. QM/MM analysis suggests that Alkaline Phosphatase (AP) and nucleotide pyrophosphatase/phosphodiesterase slightly tighten the transition state for phosphate diester hydrolysis relative to solution: implication for catalytic promiscuity in the AP superfamily. Hou G; Cui Q J Am Chem Soc; 2012 Jan; 134(1):229-46. PubMed ID: 22097879 [TBL] [Abstract][Full Text] [Related]
16. Theoretical comparison of p-nitrophenyl phosphate and sulfate hydrolysis in aqueous solution: implications for enzyme-catalyzed sulfuryl transfer. Kamerlin SC J Org Chem; 2011 Nov; 76(22):9228-38. PubMed ID: 21981415 [TBL] [Abstract][Full Text] [Related]
17. Diverse levels of sequence selectivity and catalytic efficiency of protein-tyrosine phosphatases. Selner NG; Luechapanichkul R; Chen X; Neel BG; Zhang ZY; Knapp S; Bell CE; Pei D Biochemistry; 2014 Jan; 53(2):397-412. PubMed ID: 24359314 [TBL] [Abstract][Full Text] [Related]
18. Ground state destabilization by anionic nucleophiles contributes to the activity of phosphoryl transfer enzymes. Andrews LD; Fenn TD; Herschlag D PLoS Biol; 2013 Jul; 11(7):e1001599. PubMed ID: 23843744 [TBL] [Abstract][Full Text] [Related]
19. Transition-State Interactions in a Promiscuous Enzyme: Sulfate and Phosphate Monoester Hydrolysis by Pseudomonas aeruginosa Arylsulfatase. van Loo B; Berry R; Boonyuen U; Mohamed MF; Golicnik M; Hengge AC; Hollfelder F Biochemistry; 2019 Mar; 58(10):1363-1378. PubMed ID: 30810299 [TBL] [Abstract][Full Text] [Related]
20. Resolving apparent conflicts between theoretical and experimental models of phosphate monoester hydrolysis. Duarte F; Åqvist J; Williams NH; Kamerlin SC J Am Chem Soc; 2015 Jan; 137(3):1081-93. PubMed ID: 25423607 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]