These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 25300032)

  • 1. First-principles study of thermodynamic stability and the electronic properties of intrinsic vacancy defects in barium hafnate.
    Alay-e-Abbas SM; Shaukat A
    J Phys Condens Matter; 2014 Oct; 26(43):435501. PubMed ID: 25300032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation energies and electronic structure of intrinsic vacancy defects and oxygen vacancy clustering in BaZrO3.
    Muhammad Alay-E-Abbas S; Nazir S; Shaukat A
    Phys Chem Chem Phys; 2016 Aug; 18(34):23737-45. PubMed ID: 27514742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of thermodynamics, formation energetics and electronic properties of vacancy defects in CaZrO
    Alay-E-Abbas SM; Nazir S; Cottenier S; Shaukat A
    Sci Rep; 2017 Aug; 7(1):8439. PubMed ID: 28814714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen-vacancy-induced magnetism in anti-perovskite topological Dirac semimetal Ba
    Batool J; Alay-E-Abbas SM; Johansson G; Zulfiqar W; Danish MA; Bilal M; Larsson JA; Amin N
    Phys Chem Chem Phys; 2021 Nov; 23(43):24878-24891. PubMed ID: 34724010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Geometry, electronic structure and thermodynamic stability of intrinsic point defects in indium oxide.
    Agoston P; Erhart P; Klein A; Albe K
    J Phys Condens Matter; 2009 Nov; 21(45):455801. PubMed ID: 21694019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamic properties of neutral and charged oxygen vacancies in BaZrO3 based on first principles phonon calculations.
    Bjørheim TS; Arrigoni M; Gryaznov D; Kotomin E; Maier J
    Phys Chem Chem Phys; 2015 Aug; 17(32):20765-74. PubMed ID: 26211926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of oxygen vacancies in Li
    Zhang L; Wu S; Shuai J; Hou Z; Zhu Z
    Phys Chem Chem Phys; 2021 Sep; 23(36):20444-20452. PubMed ID: 34494626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First-principles investigation of vacancies in LiTaO3.
    He W; Gao X; Pang L; Wang D; Gao N; Wang Z
    J Phys Condens Matter; 2016 Aug; 28(31):315501. PubMed ID: 27300697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Softening of hydroxyapatite by vacancies: a first principles investigation.
    Sun JP; Song Y; Wen GW; Wang Y; Yang R
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1109-15. PubMed ID: 23827549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First-principles calculations of oxygen vacancy formation and metallic behavior at a β-MnO2 grain boundary.
    Dawson JA; Chen H; Tanaka I
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1726-34. PubMed ID: 25559707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Composition dependent intrinsic defect structures in SrTiO₃.
    Liu B; Cooper VR; Xu H; Xiao H; Zhang Y; Weber WJ
    Phys Chem Chem Phys; 2014 Aug; 16(29):15590-6. PubMed ID: 24953742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the convergence of isolated neutral oxygen vacancy and divacancy properties in metal oxides using supercell models.
    Carrasco J; Lopez N; Illas F
    J Chem Phys; 2005 Jun; 122(22):224705. PubMed ID: 15974701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of point defects in PbS, PbSe and PbTe: a first principles study.
    Li WF; Fang CM; Dijkstra M; van Huis MA
    J Phys Condens Matter; 2015 Sep; 27(35):355801. PubMed ID: 26290521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intrinsic Material Properties Dictating Oxygen Vacancy Formation Energetics in Metal Oxides.
    Deml AM; Holder AM; O'Hayre RP; Musgrave CB; Stevanović V
    J Phys Chem Lett; 2015 May; 6(10):1948-53. PubMed ID: 26263275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption and reactions of O2 on anatase TiO2.
    Li YF; Aschauer U; Chen J; Selloni A
    Acc Chem Res; 2014 Nov; 47(11):3361-8. PubMed ID: 24742024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First-principles study for vacancy-induced magnetism in nonmagnetic ferroelectric BaTiO3.
    Cao D; Cai MQ; Zheng Y; Hu WY
    Phys Chem Chem Phys; 2009 Dec; 11(46):10934-8. PubMed ID: 19924328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic and thermodynamic properties of native point defects in V
    Ngamwongwan L; Fongkaew I; Jungthawan S; Hirunsit P; Limpijumnong S; Suthirakun S
    Phys Chem Chem Phys; 2021 May; 23(19):11374-11387. PubMed ID: 33711089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electronic structure and high-temperature thermochemistry of BaZrO
    Ghose KK; Bayon A; Hinkley J; Page AJ
    Phys Chem Chem Phys; 2019 Jun; 21(23):12468-12476. PubMed ID: 31143892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Confinement effects for ionic carriers in SrTiO3 ultrathin films: first-principles calculations of oxygen vacancies.
    Kotomin EA; Alexandrov V; Gryaznov D; Evarestov RA; Maier J
    Phys Chem Chem Phys; 2011 Jan; 13(3):923-6. PubMed ID: 21116562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ab initio energetics of lanthanum substitution in ferroelectric bismuth titanate.
    Shah SH; Bristowe PD
    J Phys Condens Matter; 2011 Apr; 23(15):155902. PubMed ID: 21460424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.