BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 25300231)

  • 21. Lisinopril alters contribution of nitric oxide and K(Ca) channels to vasodilatation in small mesenteric arteries of spontaneously hypertensive rats.
    Albarwani S; Al-Siyabi S; Al-Husseini I; Al-Ismail A; Al-Lawati I; Al-Bahrani I; Tanira MO
    Physiol Res; 2015; 64(1):39-49. PubMed ID: 25194131
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Contribution of IKCa channels to the control of coronary blood flow.
    Kurian MM; Berwick ZC; Tune JD
    Exp Biol Med (Maywood); 2011 May; 236(5):621-7. PubMed ID: 21502192
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular and cellular basis of small--and intermediate-conductance, calcium-activated potassium channel function in the brain.
    Pedarzani P; Stocker M
    Cell Mol Life Sci; 2008 Oct; 65(20):3196-217. PubMed ID: 18597044
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Caveolae facilitate TRPV4-mediated Ca
    Li Y; Hu H; O'Neil RG
    Am J Physiol Renal Physiol; 2018 Dec; 315(6):F1626-F1636. PubMed ID: 30207167
    [TBL] [Abstract][Full Text] [Related]  

  • 25. SK channels and calmodulin.
    Adelman JP
    Channels (Austin); 2016; 10(1):1-6. PubMed ID: 25942650
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of the functional binding pocket for compounds targeting small-conductance Ca²⁺-activated potassium channels.
    Zhang M; Pascal JM; Schumann M; Armen RS; Zhang JF
    Nat Commun; 2012; 3():1021. PubMed ID: 22929778
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Compounds that block both intermediate-conductance (IK(Ca)) and small-conductance (SK(Ca)) calcium-activated potassium channels.
    Malik-Hall M; Ganellin CR; Galanakis D; Jenkinson DH
    Br J Pharmacol; 2000 Apr; 129(7):1431-8. PubMed ID: 10742299
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of calcium-activated potassium channels in acetylcholine-induced vasodilation of rat retinal arterioles in vivo.
    Mori A; Suzuki S; Sakamoto K; Nakahara T; Ishii K
    Naunyn Schmiedebergs Arch Pharmacol; 2011 Jan; 383(1):27-34. PubMed ID: 20978884
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Domains responsible for constitutive and Ca(2+)-dependent interactions between calmodulin and small conductance Ca(2+)-activated potassium channels.
    Keen JE; Khawaled R; Farrens DL; Neelands T; Rivard A; Bond CT; Janowsky A; Fakler B; Adelman JP; Maylie J
    J Neurosci; 1999 Oct; 19(20):8830-8. PubMed ID: 10516302
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pharmacological activation of small conductance calcium-activated potassium channels with naphtho[1,2-d]thiazol-2-ylamine decreases guinea pig detrusor smooth muscle excitability and contractility.
    Parajuli SP; Soder RP; Hristov KL; Petkov GV
    J Pharmacol Exp Ther; 2012 Jan; 340(1):114-23. PubMed ID: 22001258
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cardiac small-conductance calcium-activated potassium channels in health and disease.
    Zhang XD; Thai PN; Lieu DK; Chiamvimonvat N
    Pflugers Arch; 2021 Mar; 473(3):477-489. PubMed ID: 33624131
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Impact of arrhythmogenic calmodulin variants on small conductance Ca
    Saljic A; Muthukumarasamy KM; la Cour JM; Boddum K; Grunnet M; Berchtold MW; Jespersen T
    Physiol Rep; 2019 Oct; 7(19):e14210. PubMed ID: 31587513
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural insights into the potency of SK channel positive modulators.
    Nam YW; Orfali R; Liu T; Yu K; Cui M; Wulff H; Zhang M
    Sci Rep; 2017 Dec; 7(1):17178. PubMed ID: 29214998
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Physiological roles of the intermediate conductance, Ca2+-activated potassium channel Kcnn4.
    Begenisich T; Nakamoto T; Ovitt CE; Nehrke K; Brugnara C; Alper SL; Melvin JE
    J Biol Chem; 2004 Nov; 279(46):47681-7. PubMed ID: 15347667
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of calcium-activated potassium channels with small conductance in bradykinin-induced vasodilation of porcine retinal arterioles.
    Dalsgaard T; Kroigaard C; Bek T; Simonsen U
    Invest Ophthalmol Vis Sci; 2009 Aug; 50(8):3819-25. PubMed ID: 19255162
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tuning the excitability of midbrain dopamine neurons by modulating the Ca2+ sensitivity of SK channels.
    Ji H; Hougaard C; Herrik KF; Strøbaek D; Christophersen P; Shepard PD
    Eur J Neurosci; 2009 May; 29(9):1883-95. PubMed ID: 19473240
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preferred Formation of Heteromeric Channels between Coexpressed SK1 and IKCa Channel Subunits Provides a Unique Pharmacological Profile of Ca
    Higham J; Sahu G; Wazen RM; Colarusso P; Gregorie A; Harvey BSJ; Goudswaard L; Varley G; Sheppard DN; Turner RW; Marrion NV
    Mol Pharmacol; 2019 Jul; 96(1):115-126. PubMed ID: 31048549
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differential molecular information of maurotoxin peptide recognizing IK(Ca) and Kv1.2 channels explored by computational simulation.
    Yi H; Qiu S; Wu Y; Li W; Wang B
    BMC Struct Biol; 2011 Jan; 11():3. PubMed ID: 21262000
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inward rectifier potassium (Kir2.1) channels as end-stage boosters of endothelium-dependent vasodilators.
    Sonkusare SK; Dalsgaard T; Bonev AD; Nelson MT
    J Physiol; 2016 Jun; 594(12):3271-85. PubMed ID: 26840527
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ca(2+)-activated K+ channels: molecular determinants and function of the SK family.
    Stocker M
    Nat Rev Neurosci; 2004 Oct; 5(10):758-70. PubMed ID: 15378036
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.