These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 25300251)

  • 41. Further insights into the role of bHLH121 in the regulation of iron homeostasis in
    Gao F; Robe K; Dubos C
    Plant Signal Behav; 2020 Oct; 15(10):1795582. PubMed ID: 32692954
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Iron deficiency-mediated stress regulation of four subgroup Ib BHLH genes in Arabidopsis thaliana.
    Wang HY; Klatte M; Jakoby M; Bäumlein H; Weisshaar B; Bauer P
    Planta; 2007 Sep; 226(4):897-908. PubMed ID: 17516080
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Discriminative gene co-expression network analysis uncovers novel modules involved in the formation of phosphate deficiency-induced root hairs in Arabidopsis.
    Salazar-Henao JE; Lin WD; Schmidt W
    Sci Rep; 2016 May; 6():26820. PubMed ID: 27220366
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mediator subunit 16 functions in the regulation of iron uptake gene expression in Arabidopsis.
    Zhang Y; Wu H; Wang N; Fan H; Chen C; Cui Y; Liu H; Ling HQ
    New Phytol; 2014 Aug; 203(3):770-83. PubMed ID: 24889527
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The plant-specific transcription factor gene NAC103 is induced by bZIP60 through a new cis-regulatory element to modulate the unfolded protein response in Arabidopsis.
    Sun L; Yang ZT; Song ZT; Wang MJ; Sun L; Lu SJ; Liu JX
    Plant J; 2013 Oct; 76(2):274-86. PubMed ID: 23869562
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dissecting iron deficiency-induced proton extrusion in Arabidopsis roots.
    Santi S; Schmidt W
    New Phytol; 2009; 183(4):1072-1084. PubMed ID: 19549134
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A soil bacterium regulates plant acquisition of iron via deficiency-inducible mechanisms.
    Zhang H; Sun Y; Xie X; Kim MS; Dowd SE; Paré PW
    Plant J; 2009 May; 58(4):568-77. PubMed ID: 19154225
    [TBL] [Abstract][Full Text] [Related]  

  • 48. FIT and bHLH Ib transcription factors modulate iron and copper crosstalk in Arabidopsis.
    Cai Y; Li Y; Liang G
    Plant Cell Environ; 2021 May; 44(5):1679-1691. PubMed ID: 33464620
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A WRKY Transcription Factor Regulates Fe Translocation under Fe Deficiency.
    Yan JY; Li CX; Sun L; Ren JY; Li GX; Ding ZJ; Zheng SJ
    Plant Physiol; 2016 Jul; 171(3):2017-27. PubMed ID: 27208259
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Carbon monoxide improves adaptation of Arabidopsis to iron deficiency.
    Kong WW; Zhang LP; Guo K; Liu ZP; Yang ZM
    Plant Biotechnol J; 2010 Jan; 8(1):88-99. PubMed ID: 20055961
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Analysis of two L-Galactono-1,4-lactone-responsive genes with complementary expression during the development of Arabidopsis thaliana.
    Gao Y; Badejo AA; Sawa Y; Ishikawa T
    Plant Cell Physiol; 2012 Mar; 53(3):592-601. PubMed ID: 22323769
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The iron deficiency response in
    Kim SA; LaCroix IS; Gerber SA; Guerinot ML
    Proc Natl Acad Sci U S A; 2019 Dec; 116(50):24933-24942. PubMed ID: 31776249
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The metal ion transporter IRT1 is necessary for iron homeostasis and efficient photosynthesis in Arabidopsis thaliana.
    Varotto C; Maiwald D; Pesaresi P; Jahns P; Salamini F; Leister D
    Plant J; 2002 Sep; 31(5):589-99. PubMed ID: 12207649
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Posttranslational regulation of the iron deficiency basic helix-loop-helix transcription factor FIT is affected by iron and nitric oxide.
    Meiser J; Lingam S; Bauer P
    Plant Physiol; 2011 Dec; 157(4):2154-66. PubMed ID: 21972265
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The high-affinity metal Transporters NRAMP1 and IRT1 Team up to Take up Iron under Sufficient Metal Provision.
    Castaings L; Caquot A; Loubet S; Curie C
    Sci Rep; 2016 Nov; 6():37222. PubMed ID: 27849020
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The transcription factor MYC1 interacts with FIT to negatively regulate iron homeostasis in Arabidopsis thaliana.
    Song H; Geng Q; Wu X; Hu M; Ye M; Yu X; Chen Y; Xu J; Jiang L; Cao S
    Plant J; 2023 Apr; 114(1):193-208. PubMed ID: 36721966
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Induction of Nickel Accumulation in Response to Zinc Deficiency in Arabidopsis thaliana.
    Nishida S; Kato A; Tsuzuki C; Yoshida J; Mizuno T
    Int J Mol Sci; 2015 Apr; 16(5):9420-30. PubMed ID: 25923075
    [TBL] [Abstract][Full Text] [Related]  

  • 58. bHLH121 Functions as a Direct Link that Facilitates the Activation of FIT by bHLH IVc Transcription Factors for Maintaining Fe Homeostasis in Arabidopsis.
    Lei R; Li Y; Cai Y; Li C; Pu M; Lu C; Yang Y; Liang G
    Mol Plant; 2020 Apr; 13(4):634-649. PubMed ID: 31962167
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fitting into the harsh reality: regulation of iron-deficiency responses in dicotyledonous plants.
    Ivanov R; Brumbarova T; Bauer P
    Mol Plant; 2012 Jan; 5(1):27-42. PubMed ID: 21873619
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The rice transcription factor IDEF1 is essential for the early response to iron deficiency, and induces vegetative expression of late embryogenesis abundant genes.
    Kobayashi T; Itai RN; Ogo Y; Kakei Y; Nakanishi H; Takahashi M; Nishizawa NK
    Plant J; 2009 Dec; 60(6):948-61. PubMed ID: 19737364
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.