BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 25300252)

  • 1. Identification of genes related to the phenotypic variations of a synthesized Paulownia (Paulownia tomentosa×Paulownia fortunei) autotetraploid.
    Li Y; Fan G; Dong Y; Zhao Z; Deng M; Cao X; Xu E; Niu S
    Gene; 2014 Dec; 553(2):75-83. PubMed ID: 25300252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptome analysis of the variations between autotetraploid Paulownia tomentosa and its diploid using high-throughput sequencing.
    Fan G; Wang L; Deng M; Niu S; Zhao Z; Xu E; Cao X; Zhang X
    Mol Genet Genomics; 2015 Aug; 290(4):1627-38. PubMed ID: 25773315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptome-wide profiling and expression analysis of diploid and autotetraploid Paulownia tomentosa × Paulownia fortunei under drought stress.
    Xu E; Fan G; Niu S; Zhao Z; Deng M; Dong Y
    PLoS One; 2014; 9(11):e113313. PubMed ID: 25405758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of the transcriptomes between diploid and autotetraploid
    Wang Z; Zhao Z; Fan G; Dong Y; Deng M; Xu E; Zhai X; Cao H
    Physiol Mol Biol Plants; 2019 Jan; 25(1):1-11. PubMed ID: 30804626
    [No Abstract]   [Full Text] [Related]  

  • 5. Plant-pathogen interaction, circadian rhythm, and hormone-related gene expression provide indicators of phytoplasma infection in Paulownia fortunei.
    Fan G; Dong Y; Deng M; Zhao Z; Niu S; Xu E
    Int J Mol Sci; 2014 Dec; 15(12):23141-62. PubMed ID: 25514414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide expression analysis of salt-stressed diploid and autotetraploid Paulownia tomentosa.
    Zhao Z; Li Y; Liu H; Zhai X; Deng M; Dong Y; Fan G
    PLoS One; 2017; 12(10):e0185455. PubMed ID: 29049296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative proteomic analysis of autotetraploid and diploid
    Yan L; Fan G; Deng M; Zhao Z; Dong Y; Li Y
    Physiol Mol Biol Plants; 2017 Jul; 23(3):605-617. PubMed ID: 28878499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative Analysis and Identification of miRNAs and Their Target Genes Responsive to Salt Stress in Diploid and Tetraploid Paulownia fortunei Seedlings.
    Fan G; Li X; Deng M; Zhao Z; Yang L
    PLoS One; 2016; 11(2):e0149617. PubMed ID: 26894691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative Proteomic and Transcriptomic Study on Autotetraploid Paulownia and Its Diploid Parent Reveal Key Metabolic Processes Associated with Paulownia Autotetraploidization.
    Dong Y; Deng M; Zhao Z; Fan G
    Front Plant Sci; 2016; 7():892. PubMed ID: 27446122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential transcriptome analysis between Paulownia fortunei and its synthesized autopolyploid.
    Zhang X; Deng M; Fan G
    Int J Mol Sci; 2014 Mar; 15(3):5079-93. PubMed ID: 24663058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implications of polyploidy events on the phenotype, microstructure, and proteome of Paulownia australis.
    Wang Z; Fan G; Dong Y; Zhai X; Deng M; Zhao Z; Liu W; Cao Y
    PLoS One; 2017; 12(3):e0172633. PubMed ID: 28273106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovery of genes related to witches broom disease in Paulownia tomentosa × Paulownia fortunei by a De Novo assembled transcriptome.
    Liu R; Dong Y; Fan G; Zhao Z; Deng M; Cao X; Niu S
    PLoS One; 2013; 8(11):e80238. PubMed ID: 24278262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovery of microRNAs and transcript targets related to witches' broom disease in Paulownia fortunei by high-throughput sequencing and degradome approach.
    Niu S; Fan G; Deng M; Zhao Z; Xu E; Cao L
    Mol Genet Genomics; 2016 Feb; 291(1):181-91. PubMed ID: 26243687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome of Paulownia (Paulownia fortunei) illuminates the related transcripts, miRNA and proteins for salt resistance.
    Fan G; Wang L; Dong Y; Zhao Z; Deng M; Niu S; Zhang X; Cao X
    Sci Rep; 2017 Apr; 7(1):1285. PubMed ID: 28455522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of leaf transcriptomes of cassava "Xinxuan 048" diploid and autotetraploid plants.
    Yin L; Qu J; Zhou H; Shang X; Fang H; Lu J; Yan H
    Genes Genomics; 2018 Sep; 40(9):927-935. PubMed ID: 30155710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide expression profiling of the transcriptomes of four Paulownia tomentosa accessions in response to drought.
    Dong Y; Fan G; Deng M; Xu E; Zhao Z
    Genomics; 2014 Oct; 104(4):295-305. PubMed ID: 25192670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Screening and analysis on the differentially expression genes between diploid and autotetraploid watermelon by using of digital gene expression profile.
    Long YL; Qiao F; Jiang XF; Cong HQ; Sun ML; Xu ZJ
    Braz J Biol; 2019; 79(2):180-190. PubMed ID: 29924132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in Transcript Related to Osmosis and Intracellular Ion Homeostasis in Paulownia tomentosa under Salt Stress.
    Fan G; Wang L; Deng M; Zhao Z; Dong Y; Zhang X; Li Y
    Front Plant Sci; 2016; 7():384. PubMed ID: 27066034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drought stress-induced changes of microRNAs in diploid and autotetraploid
    Cao X; Fan G; Cao L; Deng M; Zhao Z; Niu S; Wang Z; Wang Y
    Genes Genomics; 2017; 39(1):77-86. PubMed ID: 28090264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenotypic and Transcriptomic Analyses of Autotetraploid and Diploid Mulberry (Morus alba L.).
    Dai F; Wang Z; Luo G; Tang C
    Int J Mol Sci; 2015 Sep; 16(9):22938-56. PubMed ID: 26402678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.