BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 25300430)

  • 1. Cation-specific conformational behavior of polyelectrolyte brushes: from aqueous to nonaqueous solvent.
    Wang T; Long Y; Liu L; Wang X; Craig VS; Zhang G; Liu G
    Langmuir; 2014 Nov; 30(43):12850-9. PubMed ID: 25300430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reentrant behavior of poly(N-isopropylacrylamide) brushes in water-methanol mixtures investigated with a quartz crystal microbalance.
    Liu G; Zhang G
    Langmuir; 2005 Mar; 21(5):2086-90. PubMed ID: 15723514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reentrant behavior of grafted poly(sodium styrenesulfonate) chains investigated with a quartz crystal microbalance.
    Hou Y; Liu G; Wu Y; Zhang G
    Phys Chem Chem Phys; 2011 Feb; 13(7):2880-6. PubMed ID: 21161102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collapse and swelling of thermally sensitive poly(N-isopropylacrylamide) brushes monitored with a quartz crystal microbalance.
    Liu G; Zhang G
    J Phys Chem B; 2005 Jan; 109(2):743-7. PubMed ID: 16866436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anion-specific effects on the behavior of pH-sensitive polybasic brushes.
    Willott JD; Murdoch TJ; Humphreys BA; Edmondson S; Wanless EJ; Webber GB
    Langmuir; 2015 Mar; 31(12):3707-17. PubMed ID: 25768282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Counterion Binding to Swelling of Polyelectrolyte Brushes.
    Ji C; Zhou C; Zhao B; Yang J; Zhao J
    Langmuir; 2021 May; 37(18):5554-5562. PubMed ID: 33934597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ion-specific conformational behavior of polyzwitterionic brushes: exploiting it for protein adsorption/desorption control.
    Wang T; Wang X; Long Y; Liu G; Zhang G
    Langmuir; 2013 Jun; 29(22):6588-96. PubMed ID: 23659322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrophobic effects within the dynamic pH-response of polybasic tertiary amine methacrylate brushes.
    Willott JD; Humphreys BA; Murdoch TJ; Edmondson S; Webber GB; Wanless EJ
    Phys Chem Chem Phys; 2015 Feb; 17(5):3880-90. PubMed ID: 25559878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Swelling enhancement of polyelectrolyte brushes induced by external ions.
    Chu X; Yang J; Liu G; Zhao J
    Soft Matter; 2014 Aug; 10(30):5568-78. PubMed ID: 24960144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and swelling behavior of pH-responsive polybase brushes.
    Sanjuan S; Perrin P; Pantoustier N; Tran Y
    Langmuir; 2007 May; 23(10):5769-78. PubMed ID: 17425342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Periodic swelling and collapse of polyelectrolyte brushes driven by chemical oscillation.
    Liu G; Zhang G
    J Phys Chem B; 2008 Aug; 112(33):10137-41. PubMed ID: 18661935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of Raspberry-like Nanoparticles via Surface Grafting of Positively Charged Polyelectrolyte Brushes: Colloidal Stability and Surface Properties.
    Aldakkan BS; Chalmpes N; Qi G; Hammami MA; Kanj MY; Giannelis EP
    Langmuir; 2024 Mar; 40(11):5837-5849. PubMed ID: 38457691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Huge Differences in the Kinetics of Swelling Enhancement and De-enhancement of Permanently Charged Polyelectrolyte Brushes.
    Chu X; Yang J; Zhao J
    Chem Asian J; 2016 Oct; 11(19):2802-2807. PubMed ID: 27310563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Counterion Specificity of Polyelectrolyte Brushes: Role of Specific Ion-Pairing Interactions.
    Kou R; Zhang J; Chen Z; Liu G
    Chemphyschem; 2018 Jun; 19(11):1404-1413. PubMed ID: 29575481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Collapse of spherical polyelectrolyte brushes in the presence of multivalent counterions.
    Mei Y; Lauterbach K; Hoffmann M; Borisov OV; Ballauff M; Jusufi A
    Phys Rev Lett; 2006 Oct; 97(15):158301. PubMed ID: 17155365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ionic effects in collapse of polyelectrolyte brushes.
    Jiang T; Wu J
    J Phys Chem B; 2008 Jul; 112(26):7713-20. PubMed ID: 18543988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase transition characterization of poly(oligo(ethylene glycol)methyl ether methacrylate) brushes using the quartz crystal microbalance with dissipation.
    Guntnur RT; Muzzio N; Morales M; Romero G
    Soft Matter; 2021 Mar; 17(9):2530-2538. PubMed ID: 33508060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface and bulk collapse transitions of thermoresponsive polymer brushes.
    Laloyaux X; Mathy B; Nysten B; Jonas AM
    Langmuir; 2010 Jan; 26(2):838-47. PubMed ID: 19842635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water content of hydrated polymer brushes measured by an in situ combination of a quartz crystal microbalance with dissipation monitoring and spectroscopic ellipsometry.
    Ramos JJ; Moya SE
    Macromol Rapid Commun; 2011 Dec; 32(24):1972-8. PubMed ID: 22121006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Explanation for the apparent absence of collapse of polyelectrolyte brushes in the presence of bulky ions.
    Moya SE; Azzaroni O; Kelby T; Donath E; Huck WT
    J Phys Chem B; 2007 Jun; 111(25):7034-40. PubMed ID: 17552557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.