BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 25300531)

  • 1. Genome-wide microRNA changes in human intracranial aneurysms.
    Liu D; Han L; Wu X; Yang X; Zhang Q; Jiang F
    BMC Neurol; 2014 Oct; 14():188. PubMed ID: 25300531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MicroRNA and gene expression changes in unruptured human cerebral aneurysms.
    Bekelis K; Kerley-Hamilton JS; Teegarden A; Tomlinson CR; Kuintzle R; Simmons N; Singer RJ; Roberts DW; Kellis M; Hendrix DA
    J Neurosurg; 2016 Dec; 125(6):1390-1399. PubMed ID: 26918470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative evaluation of genome-wide gene expression profiles in ruptured and unruptured human intracranial aneurysms.
    Marchese E; Vignati A; Albanese A; Nucci CG; Sabatino G; Tirpakova B; Lofrese G; Zelano G; Maira G
    J Biol Regul Homeost Agents; 2010; 24(2):185-95. PubMed ID: 20487632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Altered MicroRNA Expression in Intracranial Aneurysmal Tissues: Possible Role in TGF-β Signaling Pathway.
    Supriya M; Christopher R; Devi BI; Bhat DI; Shukla D; Kalpana SR
    Cell Mol Neurobiol; 2022 Oct; 42(7):2393-2405. PubMed ID: 34185228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MicroRNA/mRNA profiling and regulatory network of intracranial aneurysm.
    Jiang Y; Zhang M; He H; Chen J; Zeng H; Li J; Duan R
    BMC Med Genomics; 2013 Sep; 6():36. PubMed ID: 24079748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Circulating MicroRNAs as Potential Molecular Biomarkers for Intracranial Aneurysmal Rupture.
    Supriya M; Christopher R; Indira Devi B; Bhat DI; Shukla D
    Mol Diagn Ther; 2020 Jun; 24(3):351-364. PubMed ID: 32323261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tissue- and plasma-specific MicroRNA signatures for atherosclerotic abdominal aortic aneurysm.
    Kin K; Miyagawa S; Fukushima S; Shirakawa Y; Torikai K; Shimamura K; Daimon T; Kawahara Y; Kuratani T; Sawa Y
    J Am Heart Assoc; 2012 Oct; 1(5):e000745. PubMed ID: 23316282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Role of miR-26a, miR-29a and miR-448-3p in the Development of Cerebral Aneurysm.
    Boga Z; Anlas O; Acik V; Ozalp O; Gezercan Y
    Turk Neurosurg; 2023; 33(3):423-430. PubMed ID: 36951025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Screening of Critical Genes and MicroRNAs in Blood Samples of Patients with Ruptured Intracranial Aneurysms by Bioinformatic Analysis of Gene Expression Data.
    Bo L; Wei B; Wang Z; Kong D; Gao Z; Miao Z
    Med Sci Monit; 2017 Sep; 23():4518-4525. PubMed ID: 28930970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MiR-29b Downregulation Induces Phenotypic Modulation of Vascular Smooth Muscle Cells: Implication for Intracranial Aneurysm Formation and Progression to Rupture.
    Sun L; Zhao M; Zhang J; Lv M; Li Y; Yang X; Liu A; Wu Z
    Cell Physiol Biochem; 2017; 41(2):510-518. PubMed ID: 28214880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The miR-143/145 cluster reverses the regulation effect of KLF5 in smooth muscle cells with proliferation and contractility in intracranial aneurysm.
    Xu J; Yan S; Tan H; Ma L; Feng H; Han H; Pan M; Yu L; Fang C
    Gene; 2018 Dec; 679():266-273. PubMed ID: 30201338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of key microRNAs and genes associated with abdominal aortic aneurysm based on the gene expression profile.
    Yang P; Cai Z; Wu K; Hu Y; Liu L; Liao M
    Exp Physiol; 2020 Jan; 105(1):160-173. PubMed ID: 31553078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inflammatory Responses Induced by the Rupture of Intracranial Aneurysms Are Modulated by miRNAs.
    Korostynski M; Morga R; Piechota M; Hoinkis D; Golda S; Dziedzic T; Slowik A; Moskala M; Pera J
    Mol Neurobiol; 2020 Feb; 57(2):988-996. PubMed ID: 31654316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression profile of long noncoding RNAs in human cerebral aneurysms: a microarray analysis.
    Li H; Yue H; Hao Y; Li H; Wang S; Yu L; Zhang D; Cao Y; Zhao J
    J Neurosurg; 2017 Nov; 127(5):1055-1062. PubMed ID: 28009235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene expression profiles in intracranial aneurysms.
    Yu L; Fan J; Wang S; Zhang D; Wang R; Zhao Y; Zhao J
    Neurosci Bull; 2014 Feb; 30(1):99-106. PubMed ID: 24429729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and characterization of microRNAs in vascular smooth muscle cells from patients with abdominal aortic aneurysms.
    Cheuk BL; Cheng SW
    J Vasc Surg; 2014 Jan; 59(1):202-9. PubMed ID: 23746831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Abdominal Aortic Aneurysm-Associated MicroRNA-516a-5p Regulates Expressions of Methylenetetrahydrofolate Reductase, Matrix Metalloproteinase-2, and Tissue Inhibitor of Matrix Metalloproteinase-1 in Human Abdominal Aortic Vascular Smooth Muscle Cells.
    Chan CYT; Cheuk BLY; Cheng SWK
    Ann Vasc Surg; 2017 Jul; 42():263-273. PubMed ID: 28288890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Meta-Analysis of Microarray-Based Expression Profiles to Identify Differentially Expressed Genes in Intracranial Aneurysms.
    Xu Z; Li H; Song J; Han B; Wang Z; Cao Y; Wang S; Zhao J
    World Neurosurg; 2017 Jan; 97():661-668.e7. PubMed ID: 27989982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microarray analysis of differentially expressed microRNAs in allergic rhinitis.
    Shaoqing Y; Ruxin Z; Guojun L; Zhiqiang Y; Hua H; Shudong Y; Jie Z
    Am J Rhinol Allergy; 2011; 25(6):e242-6. PubMed ID: 22185732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel role for endogenous hepatocyte growth factor in the pathogenesis of intracranial aneurysms.
    Peña-Silva RA; Chalouhi N; Wegman-Points L; Ali M; Mitchell I; Pierce GL; Chu Y; Ballas ZK; Heistad D; Hasan D
    Hypertension; 2015 Mar; 65(3):587-93. PubMed ID: 25510828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.