BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 25300775)

  • 1. Potential nanotechnologies and molecular targets in the quest for efficient chemotherapy in ovarian cancer.
    Rhoda K; Choonara YE; Kumar P; Bijukumar D; du Toit LC; Pillay V
    Expert Opin Drug Deliv; 2015 Apr; 12(4):613-34. PubMed ID: 25300775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The potentials of nanotechnology-based drug delivery system for treatment of ovarian cancer.
    Gidwani B; Vyas A
    Artif Cells Nanomed Biotechnol; 2015; 43(4):291-7. PubMed ID: 24245788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanotechnology in ovarian cancer: Diagnosis and treatment.
    Barani M; Bilal M; Sabir F; Rahdar A; Kyzas GZ
    Life Sci; 2021 Feb; 266():118914. PubMed ID: 33340527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeted nanotechnologies for cancer intervention: a patent review (2010-2016).
    Pradeep P; Kumar P; Choonara YE; Pillay V
    Expert Opin Ther Pat; 2017 Sep; 27(9):1005-1019. PubMed ID: 28621571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanotechnological approaches for diagnosis and treatment of ovarian cancer: a review of recent trends.
    Ding H; Zhang J; Zhang F; Xu Y; Liang W; Yu Y
    Drug Deliv; 2022 Dec; 29(1):3218-3232. PubMed ID: 36259505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Update on Nanotechnology-based Drug Delivery Systems in Cancer Treatment.
    Ho BN; Pfeffer CM; Singh ATK
    Anticancer Res; 2017 Nov; 37(11):5975-5981. PubMed ID: 29061776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanotechnology-integrated ovarian cancer metastasis therapy: Insights from the metastatic mechanisms into administration routes and therapy strategies.
    Huang Y; Li C; Zhang X; Zhang M; Ma Y; Qin D; Tang S; Fei W; Qin J
    Int J Pharm; 2023 Apr; 636():122827. PubMed ID: 36925023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanotechnology applications in thoracic surgery.
    Hofferberth SC; Grinstaff MW; Colson YL
    Eur J Cardiothorac Surg; 2016 Jul; 50(1):6-16. PubMed ID: 26843431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drug delivery/imaging multifunctionality of mesoporous silica-based composite nanostructures.
    Chen Y; Chen H; Shi J
    Expert Opin Drug Deliv; 2014 Jun; 11(6):917-30. PubMed ID: 24746014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanotechnology applied to overcome tumor drug resistance.
    Gao Z; Zhang L; Sun Y
    J Control Release; 2012 Aug; 162(1):45-55. PubMed ID: 22698943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoparticle and targeted systems for cancer therapy.
    Brannon-Peppas L; Blanchette JO
    Adv Drug Deliv Rev; 2004 Sep; 56(11):1649-59. PubMed ID: 15350294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent advances in drug delivery strategies for treatment of ovarian cancer.
    Zahedi P; Yoganathan R; Piquette-Miller M; Allen C
    Expert Opin Drug Deliv; 2012 May; 9(5):567-83. PubMed ID: 22452661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting Membrane Receptors of Ovarian Cancer Cells for Therapy.
    Liang Z; Lu Z; Zhang Y; Shang D; Li R; Liu L; Zhao Z; Zhang P; Lin Q; Feng C; Zhang Y; Liu P; Tu Z; Liu H
    Curr Cancer Drug Targets; 2019; 19(6):449-467. PubMed ID: 30306870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AEZS-108 : a targeted cytotoxic analog of LHRH for the treatment of cancers positive for LHRH receptors.
    Engel J; Emons G; Pinski J; Schally AV
    Expert Opin Investig Drugs; 2012 Jun; 21(6):891-9. PubMed ID: 22577891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cancer Nanotechnology: Recent Trends and Developments in Strategies for Targeting Cancer Cells to Improve Cancer Imaging and Treatment.
    Xu J; Zhou X; Li Y; Tian Y
    Curr Drug Metab; 2017; 18(4):266-279. PubMed ID: 28093991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perspectives and advancements in the design of nanomaterials for targeted cancer theranostics.
    Tan YY; Yap PK; Xin Lim GL; Mehta M; Chan Y; Ng SW; Kapoor DN; Negi P; Anand K; Singh SK; Jha NK; Lim LC; Madheswaran T; Satija S; Gupta G; Dua K; Chellappan DK
    Chem Biol Interact; 2020 Sep; 329():109221. PubMed ID: 32768398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The therapeutic potential of targeting ABC transporters to combat multi-drug resistance.
    Bugde P; Biswas R; Merien F; Lu J; Liu DX; Chen M; Zhou S; Li Y
    Expert Opin Ther Targets; 2017 May; 21(5):511-530. PubMed ID: 28335655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theranostic Nanostructures for Ovarian Cancer.
    Navyatha B; Nara S
    Crit Rev Ther Drug Carrier Syst; 2019; 36(4):305-371. PubMed ID: 31679190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoparticles in precision medicine for ovarian cancer: From chemotherapy to immunotherapy.
    Li Y; Gao Y; Zhang X; Guo H; Gao H
    Int J Pharm; 2020 Dec; 591():119986. PubMed ID: 33069895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Revolutionizing technologies of nanomicelles for combinatorial anticancer drug delivery.
    Jo MJ; Jin IS; Park CW; Hwang BY; Chung YB; Kim JS; Shin DH
    Arch Pharm Res; 2020 Jan; 43(1):100-109. PubMed ID: 31989478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.